深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 31956 篇文献,本页显示第 3861 - 3880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
3861 2025-08-03
Combinatorial Tuning of 5'UTR and N-Terminal Coding Sequences for Enhanced Recombinant Protein Expression in Corynebacterium glutamicum
2025-Aug-01, ACS synthetic biology IF:3.7Q1
研究论文 本研究通过组合调控5'UTR和N端编码序列,提高了谷氨酸棒状杆菌中重组蛋白的表达水平 建立了5'UTR和NCS特征序列与蛋白表达率之间的关系模式,并通过深度学习等方法验证了这些序列对蛋白表达的影响 研究仅限于谷氨酸棒状杆菌系统,未在其他微生物系统中验证 精细调控基因表达或蛋白质生产 谷氨酸棒状杆菌中的重组蛋白表达 合成生物学 NA 荧光激活细胞分选(FACS)、高通量测序、深度学习 NA 序列数据、荧光强度数据 构建了5'UTR库和NCS库,筛选出4个5'UTR特征序列和4个NCS特征序列
3862 2025-08-03
Development and Validation of a Brain Aging Biomarker in Middle-Aged and Older Adults: Deep Learning Approach
2025-Aug-01, JMIR aging IF:5.0Q1
研究论文 开发并验证了一种结合连接性和复杂性的深度学习框架,用于准确估计大脑年龄,促进神经退行性疾病的早期识别 提出了一种新型的大脑视觉图神经网络(BVGN),结合了神经生物学特征提取模块和全局关联机制,提供了敏感的基于深度学习的成像生物标志物 研究主要依赖于T1加权MRI扫描,可能未涵盖其他类型的神经影像数据 开发并验证一种深度学习框架,用于准确估计大脑年龄,促进神经退行性疾病的早期识别 中老年人群的大脑老化评估 数字病理学 阿尔茨海默病 MRI扫描 BVGN(大脑视觉图神经网络) 图像 5889个T1加权MRI扫描(来自阿尔茨海默病神经影像学倡议数据集)和34352个外部UK Biobank数据集样本
3863 2025-08-03
Automated Assessment of Test of Masticating and Swallowing Solids Using a Neck-Worn Electronic Stethoscope: A Pilot Study
2025-Aug-01, Journal of oral rehabilitation IF:3.1Q1
研究论文 本研究探索使用颈部佩戴电子听诊器(NWES)自动评估咀嚼和吞咽固体测试(TOMASS)的可行性 首次将NWES与深度学习技术结合用于TOMASS的自动化评估,提高了客观性和效率 样本仅包含健康成年人,未涵盖吞咽困难等患者群体 开发客观测量TOMASS参数的自动化方法并分析年龄性别影响 123名健康成年人(平均年龄58.7±18.5岁)的咀嚼吞咽功能 数字健康 吞咽功能障碍 深度学习声音分析 NA 音频数据和视觉数据 123名健康成年人
3864 2025-08-03
Electromagnetic Interaction Algorithm (EIA)-Based Feature Selection With Adaptive Kernel Attention Network (AKAttNet) for Autism Spectrum Disorder Classification
2025-Aug, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience IF:1.7Q4
research paper 提出了一种结合电磁相互作用算法(EIA)进行特征选择和自适应核注意力网络(AKAttNet)进行分类的集成方法,以提高自闭症谱系障碍(ASD)的检测性能 结合EIA进行特征选择和AKAttNet进行分类的集成方法,显著提高了ASD检测的准确性和计算效率 未来工作需要探索在真实临床环境中的应用,并进一步优化特征选择过程 提高自闭症谱系障碍(ASD)的早期和准确诊断 自闭症谱系障碍(ASD)患者 machine learning autism spectrum disorder EIA, AKAttNet AKAttNet, logistic regression (LR), support vector machine (SVM), random forest (RF) publicly available ASD datasets 四个公开可用的ASD数据集
3865 2025-05-14
Deep learning-enabled echocardiographic assessment of biventricular ejection fractions: the dual-task QUEST-EF model
2025-Jul-31, European heart journal. Cardiovascular Imaging
NA NA NA NA NA NA NA NA NA NA NA NA
3866 2025-08-03
Advanced air quality prediction using multimodal data and dynamic modeling techniques
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 提出了一种新型混合深度学习模型,用于提高空气质量预测的准确性 结合了CNN、BiLSTM、注意力机制、GNN和Neural ODEs等多种先进技术,并引入自适应池化机制以减少计算复杂性和训练时间 未提及具体的地理范围或时间跨度的限制 提高空气质量预测的准确性,支持实时环境监测和大规模预测 空气质量数据,包括PM2.5、PM10、CO和臭氧等污染物 机器学习 NA 深度学习 CNN, BiLSTM, GNN, Neural ODEs 多模态数据(地面传感器数据、气象数据、卫星图像) 使用Air Quality Open Dataset (AQD)数据集,具体样本量未提及
3867 2025-08-03
Deep learning for property prediction of natural fiber polymer composites
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 本文探讨了深度学习在预测天然纤维聚合物复合材料性能方面的应用 使用混合CNN-MLP模型和DNNs预测聚合物复合材料的机械、热和化学性能,展示了DNNs在捕捉复杂非线性关系方面的优越性 研究样本量相对较小,仅包含180个实验样本,虽然通过bootstrap技术增加到1500个,但仍可能影响模型的泛化能力 研究深度学习技术在预测天然纤维聚合物复合材料性能方面的应用 四种天然纤维(亚麻、棉花、剑麻、大麻)和三种聚合物基质(PLA、PP、环氧树脂) 机器学习 NA 深度学习(DL) CNN-MLP, DNNs 实验数据 180个实验样本,通过bootstrap技术增加到1500个
3868 2025-08-03
Ultrasound derived deep learning features for predicting axillary lymph node metastasis in breast cancer using graph convolutional networks in a multicenter study
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 本研究旨在开发和验证一种基于超声的图卷积网络(GCN)模型,用于预测乳腺癌患者的腋窝淋巴结转移(ALNM) 首次使用基于超声的GCN模型预测乳腺癌患者的ALNM,并在多中心研究中验证其性能 研究为回顾性设计,需要前瞻性研究进一步验证临床应用的可行性 开发一种非侵入性方法来预测乳腺癌患者的腋窝淋巴结转移状态 乳腺癌患者 数字病理 乳腺癌 超声成像 图卷积网络(GCN) 超声图像 820名符合条件的乳腺癌患者(训练队列621人,验证队列1 112人,验证队列2 87人)
3869 2025-08-03
A hybrid deep learning model for sentiment analysis of COVID-19 tweets with class balancing
2025-Jul-30, Scientific reports IF:3.8Q1
research paper 该研究提出了一种混合深度学习模型,用于分析COVID-19相关推文的情感,结合了BERT和LSTM网络 结合BERT进行上下文特征提取和LSTM进行序列学习,并应用随机过采样(ROS)解决类别不平衡问题 未提及模型在不同语言或文化背景下的泛化能力 准确分类COVID-19相关社交媒体讨论中的公众情感 COVID-19相关的推文 natural language processing COVID-19 BERT, LSTM, Random OverSampling (ROS) hybrid deep learning model (BERT + LSTM) text 未明确提及样本数量
3870 2025-08-03
Compressive strength modelling of cenosphere and copper slag-based geopolymer concrete using deep learning model
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 本研究利用人工神经网络(ANN)预测含铜渣的微珠基地聚合物混凝土的28天抗压强度 首次将ANN模型应用于含铜渣的微珠基地聚合物混凝土抗压强度预测,准确率超过98.6% 未提及模型在其他类型地聚合物混凝土中的泛化能力 开发可持续建筑材料的性能预测方法 含铜渣的微珠基地聚合物混凝土 机器学习 NA 人工神经网络(ANN) ANN 材料性能数据 未明确说明具体样本数量
3871 2025-08-03
Refined prognostication of pathological complete response in breast cancer using radiomic features and optimized InceptionV3 with DCE-MRI
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 该研究提出了一种利用MRI图像提取的放射组学特征和优化的InceptionV3模型来预测乳腺癌患者病理完全缓解(pCR)的新方法 研究创新点包括从dcom系列中提取高级特征(如面积、周长、熵等)以及将提取的特征与InceptionV3模型结合使用,并通过不同的损失函数、优化器函数和激活函数组合优化模型性能 NA 预测乳腺癌患者在接受新辅助治疗后是否能够达到病理完全缓解(pCR) 255名乳腺癌患者的MRI数据 数字病理 乳腺癌 MRI InceptionV3 (GoogleNet) 图像 255名患者
3872 2025-08-03
A privacy preserving machine learning framework for medical image analysis using quantized fully connected neural networks with TFHE based inference
2025-Jul-30, Scientific reports IF:3.8Q1
research paper 提出了一种基于全同态加密的隐私保护机器学习框架,用于医学图像分析 结合全连接神经网络和TFHE全同态加密技术,在保证数据隐私的同时进行医学图像分析 仅在MedMNIST数据集上进行了验证,未在其他医学图像数据集上测试 开发一个隐私保护的医学图像分析框架 医学图像数据 digital pathology NA TFHE全同态加密 FCNN image MedMNIST数据集
3873 2025-08-03
Ensemble of deep learning and IoT technologies for improved safety in smart indoor activity monitoring for visually impaired individuals
2025-Jul-30, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合深度学习和物联网技术的智能室内活动监测系统,旨在提高视障人士的安全性 开发了EDLES-SIAM技术,集成了ResNet50特征提取和由DNN、BiLSTM、SSAE组成的集成深度学习分类器,用于室内活动监测 未提及系统在复杂环境或不同视障程度个体中的适用性测试 通过智能监测技术提升视障人士的室内活动安全性和独立性 视障人士的室内活动监测与异常检测 计算机视觉 视力障碍 深度学习、物联网传感器技术 ResNet50、DNN、BiLSTM、SSAE 图像传感器数据 基于跌倒检测数据集的模拟分析(具体样本量未说明)
3874 2025-08-03
Deep learning molecular interaction motifs from receptor structures alone
2025-Jul-30, Journal of cheminformatics IF:7.1Q1
研究论文 本文提出了一种名为MotifGen的深度学习网络,能够直接从受体结构中预测潜在的结合基序,无需额外支持信息 MotifGen直接从受体结构预测结合基序,突破了传统方法依赖已知结合分子的限制,为新型靶标或结合位点的设计提供了新策略 NA 开发一种直接从受体结构预测结合基序的深度学习网络,以扩展结合分子设计的适用范围 蛋白质与其他分子的相互作用基序 机器学习 NA 深度学习 MotifGen 蛋白质结构数据 NA
3875 2025-08-03
A deep learning model for predicting radiation-induced xerostomia in patients with head and neck cancer based on multi-channel fusion
2025-Jul-30, BMC medical imaging IF:2.9Q2
研究论文 开发了一种基于多通道融合的三维深度学习模型,用于预测头颈癌患者放疗后口干症 通过融合GTVp通道和PGs通道的数据,构建了XeroNet模型,其性能优于现有方法 研究样本量较小(180例),且为回顾性数据 预测头颈癌患者放疗后口干症的发生 头颈癌患者 数字病理 头颈癌 深度学习 XeroNet(包含GNet、PNet和Naive Bayes决策融合层) CT图像、剂量分布和轮廓数据 180例头颈癌患者(137例训练集,43例测试集)
3876 2025-08-03
GastroNet-5M: A Multicenter Dataset for Developing Foundation Models in Gastrointestinal Endoscopy
2025-Jul-30, Gastroenterology IF:25.7Q1
研究论文 本研究介绍了GastroNet-5M数据集,包含约500万张内窥镜图像,用于开发内窥镜AI应用的基础模型 提出了一个大规模、多样化的内窥镜图像数据集GastroNet-5M,并利用自监督学习开发了一个基础模型,该模型在多种内窥镜AI应用中表现出色 数据主要来自荷兰的八家医院,可能无法完全代表全球范围内的内窥镜图像多样性 开发一个适用于内窥镜AI应用的基础模型,提高诊断准确性并减少对特定应用数据的依赖 内窥镜图像 数字病理 胃肠道疾病 自监督学习 基础模型 图像 4,820,653张内窥镜图像,来自约500,000个手术
3877 2025-08-03
Deep Learning for the Diagnosis and Treatment of Thyroid Cancer: A Review
2025-Jul-30, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists IF:3.7Q2
review 本文系统回顾了深度学习在甲状腺癌诊断和治疗中的最新研究进展 重点介绍了CNN、LSTM和GAN等先进模型在甲状腺结节超声图像分析、病理图像自动分类和甲状腺外扩展评估等关键领域的突破性应用 分析了当前深度学习在甲状腺癌诊断和治疗中面临的技术瓶颈和临床挑战 促进甲状腺癌精准诊疗体系的进一步完善,最终实现更好的甲状腺癌患者诊疗效果 甲状腺癌的诊断和治疗 digital pathology thyroid cancer deep learning CNN, LSTM, GAN ultrasound images, pathological images NA
3878 2025-08-03
Biochar-Augmented Anaerobic Digestion System: Insights from an Interpretable Stacking Ensemble Deep Learning
2025-Jul-29, Environmental science & technology IF:10.8Q1
研究论文 本研究提出了一种通过可解释的堆叠集成深度学习模型优化生物炭增强厌氧消化系统的方法 结合卷积神经网络和长短期记忆网络的堆叠集成框架,有效捕捉厌氧消化过程中的复杂相互依赖关系,并提高甲烷产量预测的准确性 NA 优化生物炭增强厌氧消化系统,提高甲烷产量并保持过程稳定性 厌氧消化系统中的生物炭增强过程 机器学习 NA 深度学习 CNN, LSTM, 堆叠集成模型 实验数据(包括原料特性、操作条件、生物炭性质及稳定性指标) NA
3879 2025-08-03
Multi-Faceted Consistency learning with active cross-labeling for barely-supervised 3D medical image segmentation
2025-Jul-29, Medical image analysis IF:10.7Q1
研究论文 提出了一种多面一致性学习框架(MF-ConS)结合主动学习策略(DUS-AL),用于在标注极少的3D医学图像分割任务中提升模型性能 结合了交叉标注的弱监督学习策略与主动学习范式,通过三种互补的一致性正则化模块提升模型在稀疏标注下的性能 在标注极少的极端情况下性能仍有提升空间,且需要人工参与主动学习过程 解决3D医学图像在稀疏标注条件下的分割问题 3D医学图像 数字病理 NA 主动学习(AL),弱监督学习(BSL) 师生架构(teacher-student architecture) 3D医学图像 三个基准数据集
3880 2025-08-03
Sequence-based virtual screening using transformers
2025-Jul-28, Nature communications IF:14.7Q1
研究论文 本文介绍了一种基于transformer架构的深度学习方法Ligand-Transformer,用于预测蛋白质与小分子之间的结合亲和力 采用序列为基础的方法,结合目标蛋白的氨基酸序列和小分子的拓扑结构,预测复合物的构象空间 NA 预测蛋白质与小分子之间的结合亲和力,揭示分子机制并促进药物设计的初步步骤 蛋白质与小分子的相互作用 机器学习 NA 深度学习 transformer 序列数据 NA
回到顶部