深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 39887 篇文献,本页显示第 3901 - 3920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3901 2025-12-30
Automated detection of the epileptogenic zone in stereoelectroencephalography for drug-resistant epilepsy using multi-epileptogenic biomarker machine learning
2026-Jan, Epilepsy research IF:2.0Q3
研究论文 本研究开发了一种可解释的机器学习框架,整合多种癫痫源性生物标志物,用于自动检测耐药性癫痫患者的癫痫发生区 首次将多种癫痫源性生物标志物(如癫痫源性指数、棘波率、波纹率、快速波纹率)整合到可解释的机器学习框架中,用于增强癫痫发生区的定位 研究为回顾性设计,样本量相对较小(38名患者),可能影响模型的泛化能力 开发一个可解释的机器学习框架,以提高耐药性癫痫患者癫痫发生区的定位准确性 耐药性癫痫患者 机器学习 癫痫 立体脑电图 深度学习模型 电生理数据 38名患者,1671个SEEG通道 NA NA AUC NA
3902 2025-12-30
SDMFFN: a novel specular detection median filtering fusion network for specular reflection removal in endoscopic images
2025-Dec-29, Biomedical physics & engineering express IF:1.3Q3
研究论文 提出一种新颖的镜面检测中值滤波融合网络(SDMFFN),用于检测和去除内窥镜图像中的镜面反射 提出了一种两阶段框架,在检测阶段集成了增强的Specular Transformer Unet(S-TransUnet)模型,结合了ASPP、IB和CBAM模块以优化多尺度特征提取;在去除阶段改进了中值滤波方法并整合了颜色信息以实现自然修复 未在摘要中明确说明 解决内窥镜图像中镜面反射导致的重要细节被遮挡和诊断准确性降低的问题 内窥镜图像 计算机视觉 NA 深度学习 Transformer, CNN 图像 未在摘要中明确说明 未在摘要中明确说明 S-TransUnet 未在摘要中明确说明 未在摘要中明确说明
3903 2025-12-30
New method for online quality control of dwell position and dwell time in brachytherapy by using high-speed camera and neural networks
2025-Dec-29, Physics in medicine and biology IF:3.3Q1
研究论文 本文开发了一种用于高剂量率近距离放射治疗中驻留位置和驻留时间在线质量控制的系统,结合高速相机和神经网络以提高系统的鲁棒性和稳定性 提出了一种集成高速相机和神经网络(特别是RT-DETRv2)的在线质量控制系统,用于实时监测和验证近距离放射治疗中的源输送参数 RT-DETRv2神经网络的处理延迟为每张图像0.35秒,不适合在线监测,但适用于离线或辅助验证 开发一个在线质量控制系统,用于准确评估高剂量率近距离放射治疗中的驻留位置和驻留时间 高剂量率近距离放射治疗中的192Ir源输送过程 计算机视觉 NA 高速相机成像,帧差法,神经网络 神经网络 图像 使用GammaMedPlus iX后装设备进行实验,测试了不同步长(0.2厘米、0.5厘米、1.0厘米)和驻留时间(2.0秒、3.0秒、10.0秒) NA RT-DETRv2 空间分辨率(0.083毫米),时间分辨率(7.0毫秒),位置偏差(小于0.1厘米,校正后约0.01厘米),驻留时间偏差(10.0毫秒内),定位准确度(91%的预测在0.26毫米内) NA
3904 2025-12-30
Semi-Supervised Deep Learning-Based Model for Segmentation of Breast Arterial Calcification on Screening Mammograms
2025-Dec-29, Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
研究论文 本研究提出了一种半监督深度学习模型,用于自动化分割和分级筛查乳腺X线摄影中的乳腺动脉钙化,以改善心血管疾病风险分层 采用基于U-Net的半监督学习策略,结合渐进式伪标签方法,利用大量未标注图像增强模型鲁棒性和跨系统泛化能力 未明确说明模型在不同人群或更广泛数据集上的泛化性能,以及计算资源需求的具体细节 开发自动化工具以标准化乳腺动脉钙化的评估,提升心血管疾病风险分层的准确性和效率 筛查乳腺X线摄影图像中的乳腺动脉钙化区域 数字病理学 心血管疾病 乳腺X线摄影 深度学习 图像 2560张标注的筛查乳腺X线摄影图像(来自7个供应商)和6000张未标注图像 NA U-Net Jaccard相似系数, 准确率, 精确率, F1分数, 召回率, 敏感性, 特异性, AUC, 加权kappa统计量 NA
3905 2025-12-30
Software-based de-filtering restores quantitative accuracy in Clarity2D-enhanced whole-body bone scintigraphy
2025-Dec-29, Annals of nuclear medicine IF:2.5Q2
研究论文 本研究评估了基于软件的去滤波方法在恢复Clarity2D降噪滤波器影响的全身骨闪烁扫描图像中骨扫描指数和热点数量定量准确性方面的有效性 提出了一种基于深度学习的逆滤波去滤波算法,能够有效逆转Clarity2D滤波器引起的图像失真,恢复定量指标的准确性 研究为回顾性设计,样本量相对有限(101例),且仅针对特定CZT SPECT/CT系统和99mTc-HMDP示踪剂 评估软件去滤波技术能否恢复降噪滤波器对骨闪烁扫描定量分析准确性的影响 接受99mTc-HMDP全身骨闪烁扫描的101名成人患者 数字病理 骨骼疾病 99mTc-HMDP全身骨闪烁扫描,SPECT/CT成像 深度学习 医学图像 101名成人患者 NA 基于深度学习的逆滤波器 Pearson相关系数,Bland-Altman分析,Dice系数,Hausdorff距离,精确率,召回率,F1分数 NA
3906 2025-12-30
A Deep Learning-Based Multimodal Clinico-Histology-Genomic Prognostic Model in Prostate Cancer
2025-Dec-28, Annals of surgical oncology IF:3.4Q1
研究论文 本研究开发了一种基于深度学习的多模态预后模型,整合了基因组特征、全切片成像的组织形态学特征和临床参数,以改善前列腺癌的风险分层和治疗决策 通过深度学习从组织病理学图像中计算推断基因组特征,消除了对基因组检测的依赖,并显著提高了预后精度 研究依赖于两个独立队列(TCGA和PLCO)进行训练和验证,可能存在样本选择偏差,且未在更广泛的多中心数据中进行外部验证 开发一个多模态预后模型,以改善前列腺癌的风险分层和治疗决策 前列腺癌患者 数字病理学 前列腺癌 全切片成像(WSI)、苏木精-伊红(H&E)染色 深度学习 图像、基因组数据、临床数据 使用TCGA队列进行训练,PLCO试验队列进行外部验证 NA NA C-index、Kaplan-Meier分析、Harrell's concordance index、多变量Cox回归 NA
3907 2025-12-30
EEGPARnet: time-frequency attention transformer encoder and GRU decoder for removal of ocular and muscular artifacts from EEG signals
2025-Dec-28, Medical & biological engineering & computing IF:2.6Q3
研究论文 提出了一种名为EEGPARnet的新型去噪网络,用于从EEG信号中去除眼动和肌肉伪影 提出了一种结合时间-频率注意力Transformer编码器和GRU解码器的轻量化架构,能够学习时频长程相似性,在显著降低模型复杂度和计算需求的同时保持高性能 仅在公开数据集EEGDenoiseNet上进行了验证,未在更多样化的临床数据或实时部署场景中进行全面测试 开发一种适用于资源受限平台的轻量化EEG信号去噪方法 受眼动和肌肉伪影污染的EEG信号 信号处理 NA EEG信号处理 Transformer, GRU EEG信号 EEGDenoiseNet数据集 NA Transformer编码器(带时间和频谱注意力模块), GRU解码器 时间相对均方根误差, 频谱相对均方根误差, 相关系数 资源受限设备(目标部署平台)
3908 2025-12-30
A deep neural network model for optimizing traditional Chinese medicine prescriptions with data augmentation
2025-Dec-28, British journal of pharmacology IF:6.8Q1
研究论文 本研究提出了一种名为DA-TCMPO的深度学习框架,通过数据增强技术优化中药处方,并在溃疡性结肠炎小鼠模型中验证了其有效性 引入了基于双重注意力的扩散模型和可变噪声嵌入模块,专门针对中药处方数据中的噪声和处方修改风险进行优化 未明确说明模型在更广泛疾病或临床环境中的泛化能力 优化中药处方以支持临床决策 中药处方数据及溃疡性结肠炎小鼠模型 自然语言处理 溃疡性结肠炎 数据增强 深度学习 文本 NA NA 扩散模型 精确率, 准确率, 召回率, F1分数 NA
3909 2025-12-30
Morphometric trait analysis and machine learning-based yield modeling in wood apple (Feronia limonia L.)
2025-Dec-28, BMC plant biology IF:4.3Q1
研究论文 本研究通过形态计量学分析和可解释的机器学习模型,揭示了木苹果产量变异的决定因素,并提出了高产理想型的选择框架 首次将多元统计与可解释的机器学习模型(随机森林+SHAP)结合,为木苹果这一未充分利用树种的生产力调控提供了首个数据驱动的框架,并识别出影响产量的关键性状组合 研究仅基于62个基因型,样本量相对有限,且未涉及分子或遗传层面的深入分析 量化木苹果冠层结构、花部和果实性状等形态计量学描述符如何解释产量变异,并建立可解释的产量预测模型 62个木苹果基因型的形态计量学性状(营养、叶、花、果实和种子性状)及单株产量 机器学习 NA 形态计量学分析 Random Forest, Support Vector Regression, Deep Learning (MLP) 形态计量学数据 62个木苹果基因型 NA Random Forest, MLP R², RMSE, MAE NA
3910 2025-12-30
Improving multi-scale short-term precipitation forecasting through frequency domain analysis and attention mechanisms
2025-Dec-24, Water research IF:11.4Q1
研究论文 本研究提出了一种结合频域分析和注意力机制的新型短期降水预报模型,旨在提高多尺度降水预报的精度和效率 在频域量化降水的多尺度分布特征,并将跨通道多尺度注意力机制与TransUNet混合架构相结合,以捕捉降水时间演变的非线性关系 未明确说明模型在极端天气事件或不同地理区域的泛化能力 提高短期降水预报的准确性和多尺度特征捕捉能力,同时减少计算资源需求 小时降水分布(未来0-24小时) 机器学习 NA NA TransUNet, 注意力机制 时间序列数据(历史降水数据) NA NA TransUNet, 跨通道多尺度注意力机制 威胁分数, RMSE NA
3911 2025-12-30
Learning feature dependencies for precise tumor region detection and segmentation in optical coherence tomography images
2025-Dec-18, International ophthalmology IF:1.4Q3
研究论文 提出一种新颖的依赖特征分割方法(DIFSM),用于提高视网膜OCT图像中肿瘤区域的定位和分割精度 通过整合图像预处理、特征间依赖分析和Vision Transformer架构,明确建模特征间依赖关系,解决重叠像素模糊问题 未提及模型在更大规模或更复杂肿瘤类型数据集上的泛化能力 提高视网膜OCT图像中肿瘤区域的自动检测和分割精度 视网膜OCT图像中的肿瘤感染区域 计算机视觉 视网膜肿瘤 光学相干断层扫描(OCT) Vision Transformer(ViT) 图像 OCTID数据集中的高分辨率视网膜OCT图像 未明确指定 Vision Transformer Dice系数, IoU, 精确率, 灵敏度, 特异性, 均方匹配误差(MSME) 未明确指定
3912 2025-12-30
HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
2025-Dec-11, ArXiv
PMID:41040798
研究论文 本文提出了一种名为HEIST的分层图变换器基础模型,用于处理空间转录组学和蛋白质组学数据,通过建模组织为分层图结构来整合空间信息和细胞内部基因共表达网络 HEIST模型首次将空间转录组学和蛋白质组学数据统一建模为分层图结构,通过跨层级消息传递计算基因嵌入,无需固定基因词汇表即可泛化到新数据类型(如空间蛋白质组学) 未明确说明模型在处理超大规模数据集时的计算效率限制或对特定组织类型的适用性局限 开发一个能够同时利用空间信息和细胞内基因/蛋白质表达数据的基础模型,以理解细胞在组织微环境中的调控机制 空间转录组学和蛋白质组学数据中的细胞及其基因/蛋白质表达模式 计算生物学 NA 空间转录组学, 空间蛋白质组学 图变换器 空间组学数据(包含空间坐标和细胞内转录/蛋白质计数) 来自15个器官的124个组织中的2230万个细胞 NA 分层图变换器 临床结果预测准确性, 细胞类型注释性能, 基因插补精度 NA
3913 2025-12-30
Enlarged Perivascular Spaces and Modifiable Vascular Risk Factors: Cross-Sectional and Longitudinal Analysis in the UK Biobank Cohort
2025-Dec-06, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry
研究论文 本研究利用英国生物银行队列数据,通过深度学习模型量化脑部MRI中的血管周围间隙,并探讨了血管风险因素、APOE基因型与PVS之间的横断面和纵向关联 首次在大规模社区队列中,结合深度学习自动量化PVS,系统分析了多种可改变血管风险因素及APOE基因型与PVS的关联,并关注了性别和脑区特异性模式 纵向分析样本量相对较小,随访时间较短,风险因素与PVS的纵向关联有限 探讨血管风险因素和APOE基因型与脑部血管周围间隙的关联,以评估PVS作为血管性脑健康生物标志物的潜力 英国生物银行队列中的社区居住成年人,横断面分析包括38,121名参与者,纵向分析包括4,225名参与者 数字病理学 老年疾病 脑部MRI 深度学习模型 图像 横断面分析38,121名参与者,纵向分析4,225名参与者 NA NA 回归系数(b), 95%置信区间(CI) NA
3914 2025-12-30
Unveiling Hearts: Deep Learning-Based Electrocardiogram Classification for Congenital Heart Disease Detection
2025-Dec, Current medical science IF:2.0Q3
研究论文 本研究开发了一种基于深度学习的ECG分类方法,用于准确检测先天性心脏病 结合CNN和RNN分析ECG信号,并应用SMOTE技术处理类别不平衡问题,提高了分类准确性 需要更多数据集进行验证,并需解决实际应用中的噪声处理和外部验证等挑战 开发一种深度学习方法来准确分类先天性心脏病 ECG信号数据 机器学习 先天性心脏病 ECG分析 CNN, RNN 时间序列数据 MIT-BIH心律失常数据库 NA NA 准确性 NA
3915 2025-12-30
Basic Science and Pathogenesis
2025-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
研究论文 本研究开发了一种基于深度学习的自动化方法,用于分析阿尔茨海默病APP/PS1转基因小鼠模型中淀粉样蛋白斑块微环境中的星形胶质细胞和小胶质细胞的时空动态变化 采用可解释的机器学习模型区分反应性星形胶质细胞的肥大形态,并开发了区分血管与非血管淀粉样蛋白斑块的ML模型,提供了比传统染色密度更敏感的疾病进展测量指标 研究基于转基因小鼠模型,可能无法完全反映人类阿尔茨海默病的复杂性;样本量相对有限(6、9、12月龄小鼠) 评估阿尔茨海默病淀粉样蛋白斑块微环境中星形胶质细胞增生和小胶质细胞增生的时空动态变化 APP/PS1转基因阿尔茨海默病小鼠模型中的星形胶质细胞和小胶质细胞 数字病理学 阿尔茨海默病 多重免疫荧光组织切片分析 深度学习, 机器学习 图像 6、9、12月龄APP/PS1转基因小鼠的组织切片 未明确说明 未明确说明 统计显著性 NA
3916 2025-12-30
Automated detection of fin whales with distributed acoustic sensing in the Arctic and Mediterranean
2025-Dec-01, The Journal of the Acoustical Society of America IF:2.1Q1
研究论文 本研究提出了一种基于分布式声学传感(DAS)和深度学习的自动化检测管道,用于在北极和地中海地区大规模监测长须鲸的低频叫声 首次将YOLO深度学习模型应用于DAS数据中的鲸鱼叫声检测,并展示了其在跨地理位置和海床环境下的强泛化能力,无需微调即可实现高性能 研究仅基于两条海底电缆的数据集(挪威斯瓦尔巴和摩纳哥-意大利),可能未覆盖所有海洋环境或鲸鱼叫声变体 开发一种自动化、可扩展的管道,用于利用分布式声学传感技术监测海洋哺乳动物(特别是长须鲸)的叫声 长须鲸的低频叫声 机器学习 NA 分布式声学传感(DAS) YOLO, Hough变换, DBSCAN, 模板匹配, LightGBM 声学数据 两条海底电缆的数据集:挪威斯瓦尔巴135公里和摩纳哥-意大利162公里 NA YOLO F1分数 NA
3917 2025-12-30
Hankel-FNO: Fast underwater acoustic charting via physics-encoded Fourier neural operator
2025-Dec-01, The Journal of the Acoustical Society of America IF:2.1Q1
研究论文 本文提出了一种基于傅里叶神经算子的快速水下声学制图方法,通过结合物理知识实现高效准确的声场预测 提出了Hankel-FNO模型,将声传播知识和地形信息编码到傅里叶神经算子中,解决了传统数据驱动方法在固定分辨率和显式偏微分方程依赖方面的限制 未明确说明模型在极端复杂环境或噪声干扰下的性能表现,且对大规模实时应用的泛化能力仍需进一步验证 开发快速准确的水下声学制图方法,以支持环境感知传感器部署优化和自主车辆路径规划等下游任务 水下声场传播与声学制图 机器学习 NA 傅里叶神经算子 FNO 声场数据、地形数据 NA NA Hankel-FNO 准确性、计算速度、长程预测性能 NA
3918 2025-12-30
FigATree: a novel framework for histological subtyping and grading of lung adenocarcinoma
2025-Nov-27, Virchows Archiv : an international journal of pathology IF:3.4Q1
研究论文 本文提出了一种名为FigATree的新型可解释AI框架,用于肺腺癌的组织学亚型分型和分级诊断 结合基础模型增强的区域级编码器与基于XGBoost的病理学知识驱动的玻片级分类器,实现了高精度且可解释的肺腺癌诊断 未明确说明模型在更广泛或更具挑战性数据集上的潜在性能限制 开发一种可解释的AI框架,以提升肺腺癌组织学亚型分型和分级的准确性与临床可翻译性 肺腺癌(LUAD) 数字病理学 肺癌 H&E染色 基础模型, XGBoost 图像 1186张H&E染色全玻片图像 NA NA 准确率 NA
3919 2025-12-30
Artificial Intelligence Use in Acne Diagnosis and Management-A Scoping Review
2025-Nov-06, International journal of dermatology IF:3.5Q1
综述 本文是关于人工智能在痤疮诊断与管理中应用的综述,评估了AI工具的类型、应用、性能及训练数据中的皮肤多样性问题 提供了AI在痤疮领域应用的最新概览,特别关注了模型性能比较以及训练数据中皮肤多样性不足的公平性问题 仅基于105篇文献进行分析,且多数研究仅关注诊断,管理应用较少;训练数据中皮肤颜色多样性报告不足 评估AI在痤疮诊断与管理中的应用现状、工具类型、性能及数据多样性 痤疮 机器学习 痤疮 NA 深度学习, 经典机器学习, 集成模型, 大语言模型 图像 105篇研究文章 NA NA 准确率 NA
3920 2025-12-30
CELLetter: leveraging large language model and dual-stream network to identify context-specific ligand-receptor interactions for cell-cell communication analysis
2025-Nov-01, Briefings in bioinformatics IF:6.8Q1
研究论文 本文介绍了一个名为CELLetter的深度学习框架,用于识别细胞间通讯中的配体-受体相互作用,并整合下游转录因子活动来解码细胞信号传导 结合蛋白质大语言模型ProstT5进行特征嵌入,采用双流架构进行特征提取和降维,引入门控机制进行动态权重调整的特征融合,并提出了基于空间转录组学的多角度验证策略 未明确说明模型在处理大规模数据集时的计算效率或对特定细胞类型的泛化能力限制 开发一个深度学习框架以识别潜在的配体-受体相互作用并量化细胞间通讯强度 细胞间通讯中的配体-受体相互作用,特别是基于单细胞RNA测序数据和空间转录组学数据 机器学习 头颈部鳞状细胞癌 单细胞RNA测序,空间转录组学,基因调控网络分析 深度学习框架,双流网络 蛋白质序列,单细胞RNA测序数据,空间转录组学数据 NA NA 双流架构,门控机制 11种评估指标,包括共定位距离、共表达比率、共检测概率等 NA
回到顶部