深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26491 篇文献,本页显示第 21 - 40 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2025-06-14
Integrating Deep Learning Derived Morphological Traits and Molecular Data for Total-Evidence Phylogenetics: Lessons from Digitized Collections
2025-Jun-12, Systematic biology IF:6.1Q1
研究论文 本文探讨了将分子数据与深度学习从昆虫标本图像中提取的形态特征相结合,以生成全证据系统发育树,并揭示了相关挑战 首次将深度学习提取的形态特征与分子数据结合用于全证据系统发育分析,并评估了不同数据集分割和深度度量损失函数的影响 深度学习提取的形态特征单独使用时表现不如分子分析,且存在系统发育信号强度和数据获取资源需求方面的挑战 探索深度学习提取的形态特征与分子数据结合在全证据系统发育分析中的应用效果 隐翅虫标本图像和分子数据 计算生物学 NA 深度学习 深度度量学习模型 图像和分子数据 NA
22 2025-06-14
Application of Deep Learning Accelerated Image Reconstruction in T2-Weighted Turbo Spin-Echo Imaging of the Brain at 7T
2025-Jun-12, AJNR. American journal of neuroradiology
研究论文 本研究评估了基于深度学习的图像重建技术在7T磁共振T2加权涡轮自旋回波成像中的应用 使用在7T数据上训练的深度神经网络进行图像重建,显著提升了图像质量 研究仅针对30例患者数据,样本量相对较小 解决7T磁共振成像时间长和运动敏感性的问题 7T磁共振脑部T2加权涡轮自旋回波图像 医学影像处理 NA 深度学习加速图像重建 深度神经网络 磁共振图像 30例临床7T脑部MRI患者数据
23 2025-06-14
Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT
2025-Jun-12, AJNR. American journal of neuroradiology
研究论文 本研究探讨了通过对抗训练和输入修改提高深度学习模型在预测急性脑出血患者血肿扩张中的鲁棒性 采用对抗训练和Otsu多阈值分割作为额外输入,提高了模型对抗攻击的鲁棒性 对抗训练对FGSM攻击的鲁棒性提升有限,且对PGD类图像的跨攻击鲁棒性不足 提高深度学习模型在预测急性脑出血患者血肿扩张中的鲁棒性 急性脑出血患者的入院头部CT扫描 数字病理学 脑出血 FGSM和PGD对抗攻击,Otsu多阈值分割 深度学习模型 图像 训练集890名患者,独立验证集684名患者
24 2025-06-14
Task Augmentation-Based Meta-Learning Segmentation Method for Retinopathy
2025-Jun-12, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 提出了一种基于任务增强的元学习方法(TAMS),用于视网膜图像分割,以减少对大量标注数据的依赖 提出视网膜病变模拟算法(LSA)自动生成多类视网膜疾病数据集,并设计生成模拟网络(GSNet)以保持复杂视网膜疾病的高质量表示 未提及具体的数据集规模限制或模型在其他类型医学图像上的泛化能力 解决医学图像分割任务中标注数据稀缺和分布差异的问题 视网膜图像(OCT和CFP图像) 数字病理 视网膜病变 深度学习(DL)、元学习 GSNet 医学图像 三个不同的OCT和CFP图像数据集(未提及具体样本数量)
25 2025-06-14
Transformer for Multitemporal Hyperspectral Image Unmixing
2025-Jun-12, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 提出了一种名为MUFormer的端到端无监督深度学习模型,用于多时相高光谱图像解混 引入了全局感知模块(GAM)和变化增强模块(CEM),有效捕捉多时相语义信息 仅在1个真实数据集和2个合成数据集上进行了实验验证 解决多时相高光谱图像解混的挑战 多时相高光谱图像 计算机视觉 NA 深度学习 Transformer 高光谱图像 1个真实数据集和2个合成数据集
26 2025-06-14
Knowledge Graph-Enhanced Deep Learning Model (H-SYSTEM) for Hypertensive Intracerebral Hemorrhage: Model Development and Validation
2025-Jun-12, Journal of medical Internet research IF:5.8Q1
研究论文 开发并验证了一个名为H-SYSTEM的知识图谱增强深度学习模型,用于辅助神经外科医生诊断和治疗高血压性脑出血患者 整合医学领域知识图谱(HKG)以提升决策准确性和可解释性,并采用BERT-IDCNN-BiLSTM-CRF模型作为关键命名实体识别模块 未提及具体局限性 开发一个可解释且高效的决策支持系统,辅助神经外科医生处理高血压性脑出血病例 高血压性脑出血患者的电子病历数据 数字病理 高血压性脑出血 知识图谱构建、BERT-IDCNN-BiLSTM-CRF模型 BERT-IDCNN-BiLSTM-CRF 电子病历文本 605名来自6个不同医疗中心的患者
27 2025-06-14
Enhancing the Accuracy of Skin Lesion Diagnosis Using Hyperspectral Imaging and Deep Learning
2025-Jun-12, Journal of biophotonics IF:2.0Q3
研究论文 本研究提出了一种结合高光谱成像(HSI)和深度学习的新型诊断方法,用于区分皮炎、光化性角化病(AK)和脂溢性角化病(SK) 结合高光谱成像和深度学习,通过Savitzky-Golay滤波和一阶导数光谱分析捕捉病变的细微生化及形态差异 未来工作需关注可扩展性、成本效益优化以及与现有诊断平台的无缝集成 提高皮肤病变诊断的准确性 皮炎、光化性角化病(AK)和脂溢性角化病(SK) 数字病理 皮肤疾病 高光谱成像(HSI) 深度学习 图像 60个术中临床样本
28 2025-06-14
Minimizing human-induced variability in quantitative angiography for a robust and explainable AI-based occlusion prediction in flow diverter-treated aneurysms
2025-Jun-12, Journal of neurointerventional surgery IF:4.5Q1
研究论文 本研究探讨了通过减少定量血管造影中的注射偏差,结合可解释AI技术,提高流动分流器治疗的颅内动脉瘤闭塞预测的准确性和可解释性 提出了一种注射偏差去除算法以减少定量血管造影的变异性,并首次将可解释AI(XAI)技术应用于流动分流器治疗的动脉瘤闭塞预测,提高了模型的可靠性和临床可解释性 研究仅基于458名患者的血管造影数据,样本量相对有限,且未探讨其他可能影响预测准确性的因素 实现注射偏差去除算法以减少定量血管造影的变异性,并研究可解释AI对深度学习模型在流动分流器治疗的动脉瘤闭塞预测中的可靠性和可解释性的影响 流动分流器治疗的颅内动脉瘤患者 数字病理 颅内动脉瘤 定量血管造影(QA),深度学习神经网络(DNN) DNN 血管造影图像 458名患者的血管造影数据
29 2025-06-14
ISAR Dataset for the Recognition of Conical Targets with Micro-Motion
2025-Jun-12, Scientific data IF:5.8Q1
research paper 本文介绍了ISAR微动数据集(IMD),一个基于全极化ISAR工作原理的模拟雷达回波数据集,用于评估不同方法在弹道微动目标识别中的性能 提出了首个公开可用的模拟雷达回波数据集IMD,解决了当前缺乏公开数据集的问题,并讨论了电磁模拟方法细节对数据的影响 数据集基于模拟生成,可能无法完全反映真实场景中的复杂情况 解决弹道微动目标识别领域缺乏公开数据集的问题,促进不同方法的性能评估 弹道微动目标的雷达回波数据 雷达信号处理 NA 全极化ISAR模拟 NA 雷达回波数据 NA
30 2025-06-14
CT-based deep learning model for improved disease-free survival prediction in clinical stage I lung cancer: a real-world multicenter study
2025-Jun-12, European radiology IF:4.7Q1
研究论文 开发了一种基于CT图像的深度学习模型,用于预测临床I期肺癌患者的无病生存期(DFS) 利用三维卷积神经网络从CT图像中提取肿瘤特征,显著优于传统临床模型,能够有效识别高风险患者 研究为回顾性队列研究,可能存在选择偏倚 提高临床I期肺癌患者无病生存期的预测准确性 临床I期非小细胞肺癌(NSCLC)患者 数字病理 肺癌 CT成像 三维卷积神经网络(3D-CNN) 图像 2489名手术患者(开发队列)和248名接受立体定向体放射治疗(SBRT)的患者(外部验证队列)
31 2025-06-14
Study on a Traditional Chinese Medicine constitution recognition model using tongue image characteristics and deep learning: a prospective dual-center investigation
2025-Jun-12, Chinese medicine IF:5.3Q1
研究论文 本研究开发了一种基于舌象特征和深度学习的传统中医体质识别模型 结合传统舌象特征和深度学习特征,构建了融合特征的智能识别模型,克服了传统方法的局限性 研究仅基于两个医疗中心的数据,样本来源可能不够广泛 开发定量分析的中医体质识别模型 接受中医体质评估的参与者 数字病理学 NA LASSO回归、随机森林(RF)、多层感知机(MLP) MLP 图像 1374名参与者
32 2025-06-14
3D Quantification of Viral Transduction Efficiency in Living Human Retinal Organoids
2025-Jun-12, Small methods IF:10.7Q1
研究论文 本文介绍了一种在活体人类视网膜类器官中定量3D表征病毒转导效率的方法 结合了基因递送效率在空间和时间上的量化,利用人类视网膜类器官、工程化腺相关病毒载体、共聚焦活体成像和基于深度学习的图像分割 未提及具体样本量或实验重复次数,可能影响结果的普遍性 优化基因疗法并定量测试未来治疗方法和其他基因递送方法 人类视网膜类器官 数字病理学 眼科疾病 共聚焦活体成像、深度学习方法 深度学习图像分割 3D图像 NA
33 2025-06-14
Deep learning neural network prediction of postoperative complications in patients undergoing laparoscopic right hemicolectomy with or without CME and CVL for colon cancer: insights from SICE (Società Italiana di Chirurgia Endoscopica) CoDIG data
2025-Jun-11, Techniques in coloproctology IF:2.7Q1
research paper 本研究评估了深度学习神经网络(DLNN)在预测结肠癌腹腔镜右半结肠切除术后并发症中的应用 使用DLNN模型预测术后并发症,并与其他机器学习模型(如决策树和随机森林)进行比较,展示了DLNN的优越性能 需要外部验证以及在多样化临床环境中的实施以进一步优化手术结果 评估机器学习模型在预测结肠癌腹腔镜右半结肠切除术后并发症中的应用 接受腹腔镜右半结肠切除术的结肠癌患者 machine learning colon cancer deep learning neural networks (DLNN), decision trees (DT), random forest (RF), synthetic minority over-sampling technique (SMOTE) DLNN, DT, RF demographic, clinical, and surgical factors 来自CoDIG(ColonDx Italian Group)多中心数据库的患者数据
34 2025-06-14
Comparison of Multimodal Deep Learning Approaches for Predicting Clinical Deterioration in Ward Patients: Observational Cohort Study
2025-06-11, Journal of medical Internet research IF:5.8Q1
研究论文 比较了多种多模态深度学习方法在预测病房患者临床恶化方面的效果 首次比较了结合临床笔记信息与仅使用结构化数据的模型在预测临床恶化方面的性能,并探索了不同的概念唯一标识符(CUI)参数化方法 添加临床笔记中的CUI并未显著提高模型性能,且研究仅基于两家医院的数据 预测病房患者的临床恶化(转入重症监护室或死亡) 成年病房患者 机器学习 临床恶化 深度循环神经网络(RNN) RNN 结构化数据和临床笔记文本 开发队列284,302名患者,外部验证队列248,055名患者
35 2025-06-14
Seamless finer-resolution soil moisture from the synergistic merging of the FengYun-3 satellite series
2025-Jun-11, Scientific data IF:5.8Q1
research paper 本研究开发了一种从风云卫星系列(FY-3B、C、D)获取的被动微波观测数据中融合生成空间分辨率为0.15°的土壤湿度数据集的方法 采用最小化均方误差(MSE)的融合技术,结合三个卫星的升轨和降轨观测数据,获得亚日尺度的土壤湿度估计,并使用深度学习插值方法填补缺失数据 数据集时间跨度仅限于2011年至2020年 提供满足全球卫星土壤湿度观测使用挑战的数据集 风云卫星系列(FY-3B、C、D)的被动微波观测数据 遥感 NA 被动微波观测、深度学习插值 NA 卫星遥感数据 2011年至2020年的全球观测数据
36 2025-06-14
Mechanisms of organotropism in breast cancer and predicting metastasis to distant organs using deep learning
2025-Jun-11, Discover oncology IF:2.8Q2
研究论文 本研究探讨了乳腺癌的器官趋向性机制,并利用深度学习预测乳腺癌向远处器官转移 整合单细胞RNA测序、批量RNA测序、ChIP-seq数据和深度学习技术,开发了一个深度神经网络模型来识别器官特异性转移基因 研究仅关注了乳腺癌向骨、脑、肝和肺四种器官的转移,未涵盖其他可能的转移部位 探索乳腺癌转移的器官趋向性机制,并预测其向远处器官的转移 乳腺癌及其向骨、脑、肝和肺的转移 数字病理学 乳腺癌 单细胞RNA测序、批量RNA测序、ChIP-seq、深度学习 DNN 基因组数据、基因表达数据 NA
37 2025-06-14
Soft-tissue prediction based on 3D photographs for virtual surgery planning of orthognathic surgery
2025-Jun-11, Computers in biology and medicine IF:7.0Q1
研究论文 开发并验证了一种基于深度学习的实时预测正颌手术后面部软组织变化的方法 结合了可变形模型、主成分分析和前馈神经网络,实现了多种正颌手术效果的实时预测 预测精度在不同面部区域存在差异,下巴区域的误差相对较大 提高正颌手术前三维软组织模拟的准确性和实时性 正颌手术患者的面部软组织变化 数字病理 颌面畸形 3D摄影 前馈神经网络 3D图像 458名接受各种正颌手术的患者
38 2025-06-14
Towards more reliable prostate cancer detection: Incorporating clinical data and uncertainty in MRI deep learning
2025-Jun-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种结合临床数据和MRI深度学习的更可靠前列腺癌检测方法 提出了一种双模态模型,同时整合影像和临床数据,并引入预测不确定性评估框架 未具体说明样本数量和临床数据的具体来源 提高前列腺癌诊断的可靠性和临床应用性 前列腺癌病例 数字病理 前列腺癌 bpMRI 深度学习模型 影像数据和临床数据 NA
39 2025-06-14
Implementation of biomedical segmentation for brain tumor utilizing an adapted U-net model
2025-Jun-11, Computers in biology and medicine IF:7.0Q1
研究论文 本文通过改进的U-Net模型实现脑肿瘤的生物医学分割 采用自注意力机制的U-Net设计,提高了脑肿瘤分割的性能,特别是在模糊结构的分割质量上 仅使用了来自Kaggle网站的3064张MRI图像,样本来源单一 研究U-Net设计的进展及其在脑肿瘤分割性能上的提升 脑肿瘤的MRI图像 数字病理学 脑肿瘤 MRI U-Net, Attention U-Net, 自注意力U-Net 图像 3064张MRI图像
40 2025-06-14
GPS: Harnessing data fusion strategies to improve the accuracy of machine learning-based genomic and phenotypic selection
2025-Jun-11, Plant communications IF:9.4Q1
研究论文 本研究提出了一种名为GPS的新型数据融合框架,旨在通过整合基因组和表型数据来提高植物育种中的预测准确性 GPS框架通过三种不同的融合策略(数据融合、特征融合和结果融合)整合基因组和表型数据,显著提高了预测准确性、鲁棒性和可迁移性 NA 提高植物育种中基因组选择和表型选择的预测准确性、鲁棒性和可迁移性 四种作物(玉米、大豆、水稻和小麦)的大规模数据集 机器学习 NA 基因组选择和表型选择 GBLUP, BayesB, Lasso, RF, SVM, XGBoost, LightGBM, DNNGP, MAK 基因组数据和表型数据 大规模数据集,样本量小至200时仍保持高预测准确性
回到顶部