本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 2025-05-31 |
Strategies to Improve the Robustness and Generalizability of Deep Learning Segmentation and Classification in Neuroimaging
2025-Jun, BioMedInformatics
DOI:10.3390/biomedinformatics5020020
PMID:40271381
|
综述 | 本文综述了提高深度学习模型在神经影像分割和分类中鲁棒性和泛化能力的策略 | 总结了包括正则化、数据增强、迁移学习和不确定性估计在内的关键策略,以应对数据变异性和领域转移等主要挑战 | 仅包括同行评审的英文脑成像研究,可能忽略了其他语言或非脑成像的相关研究 | 提高深度学习模型在神经影像分割和分类中的鲁棒性和泛化能力,以增强其在实际临床应用中的可靠性 | 神经影像数据 | 医学影像分析 | 神经系统疾病 | 深度学习 | 深度学习模型 | 医学影像 | NA |
22 | 2025-05-31 |
IR-MBiTCN: Computational prediction of insulin receptor using deep learning: A multi-information fusion approach with multiscale bidirectional temporal convolutional network
2025-Jun, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.143844
PMID:40319974
|
research paper | 提出了一种基于深度学习和多信息融合的计算方法IR-MBiTCN,用于预测胰岛素受体(IR) | 首次将多尺度双向时间卷积网络(MBiTCN)应用于IR预测,结合了多视角融合特征(MPFF) | 需要进一步验证模型在其他类型蛋白质预测中的泛化能力 | 开发一种可扩展、高效的计算方法来预测胰岛素受体,替代传统实验方法 | 胰岛素受体(IR) | machine learning | cancer, neurological | W-GDPC, FastText, BB-PSSM | MBiTCN | sequence | 训练和测试数据集(具体数量未提及) |
23 | 2025-05-31 |
Application of Deep Neural Networks in the Manufacturing Process of Mesenchymal Stem Cells Therapeutics
2025-May-30, International journal of stem cells
IF:2.5Q3
DOI:10.15283/ijsc24070
PMID:39322430
|
研究论文 | 本文应用深度神经网络监测间充质干细胞治疗制品的制造过程中的细胞融合度和状态 | 首次基于深度学习方法分析细胞图像,直接影响干细胞治疗制品的重要产品参数——产量和质量 | 多层堆叠培养仅在单层堆叠培养无异常细胞时进行,因此异常细胞只能在单层堆叠图像中检测到 | 提高干细胞治疗制品制造过程中细胞融合度和状态监测的准确性和一致性 | 间充质干细胞 | 数字病理学 | NA | 深度学习 | 深度神经网络 | 图像 | 多种培养容器中培养的间充质干细胞图像 |
24 | 2025-05-31 |
A hybrid explainable federated-based vision transformer framework for breast cancer prediction via risk factors
2025-May-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96527-0
PMID:40419634
|
研究论文 | 本文提出了一种可解释的联邦学习框架,用于通过风险因素预测乳腺癌 | 结合全局Vision Transformer (ViT)和局部卷积神经网络(CNN)特征的混合模型,以及可解释AI技术增强模型透明度 | NA | 开发一种隐私保护且准确的乳腺癌预测方法 | 乳腺癌预测 | 计算机视觉 | 乳腺癌 | 联邦学习, 可解释AI (XAI) | Vision Transformer (ViT), 卷积神经网络 (CNN), LIME | 图像, 风险因素数据 | NA |
25 | 2025-05-31 |
Multicentre evaluation of deep learning CT autosegmentation of the head and neck region for radiotherapy
2025-May-27, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01624-z
PMID:40419731
|
研究论文 | 一项多中心研究评估了头颈部CT自动分割软件在全球七个机构的性能 | 首次在全球范围内多中心评估头颈部CT自动分割软件的性能,并量化了不同机构间的观察者间变异性 | 自动分割软件的临床效益在不同ROI和诊所间差异显著,部分淋巴结区域未显示显著时间节省 | 评估头颈部CT自动分割软件在放射治疗中的性能和时间节省效果 | 头颈部CT图像中的11个淋巴结水平和7个风险器官轮廓 | 数字病理 | 头颈部疾病 | CT成像 | 深度学习 | 医学影像 | 七个机构的CT图像数据 |
26 | 2025-05-31 |
Automatic assessment of lower limb deformities using high-resolution X-ray images
2025-May-27, BMC musculoskeletal disorders
IF:2.2Q3
DOI:10.1186/s12891-025-08784-9
PMID:40420033
|
研究论文 | 提出了一种基于图像金字塔的新型骨骼标志点检测方法,用于自动评估下肢畸形 | 采用CNN结合误差反馈方法迭代优化标志点坐标,提高了检测精度并降低了计算成本 | NA | 开发自动评估下肢畸形的算法以辅助骨科手术规划 | 下肢X射线图像中的骨骼标志点和角度测量 | 计算机视觉 | 骨科疾病 | X射线成像 | CNN | X射线图像 | 临床采集的全腿X射线数据集(具体数量未说明) |
27 | 2025-05-31 |
Unveiling the potential of artificial intelligence in revolutionizing disease diagnosis and prediction: a comprehensive review of machine learning and deep learning approaches
2025-May-26, European journal of medical research
IF:2.8Q2
DOI:10.1186/s40001-025-02680-7
PMID:40414894
|
review | 本文全面回顾了2015年至2024年间机器学习和深度学习在16种不同疾病预测和诊断中的应用 | 强调了ML和DL技术在医疗保健领域的变革潜力,并评估了先进方法及其成果 | 数据质量、模型可解释性以及临床工作流程整合仍存在重大障碍 | 推进医疗实践,增强临床决策,并通过AI驱动技术的有效和负责任实施改善患者预后 | 16种不同疾病 | machine learning | NA | machine learning, deep learning | NA | NA | NA |
28 | 2025-05-31 |
Automated landmark-based mid-sagittal plane: reliability for 3-dimensional mandibular asymmetry assessment on head CT scans
2025-May-26, Clinical oral investigations
IF:3.1Q1
DOI:10.1007/s00784-025-06397-z
PMID:40415151
|
research paper | 本研究评估了一种基于自动化标志点的正中矢状面(MSP)方法在头CT扫描中量化下颌不对称性的可靠性 | 提出了一种全自动化的基于标志点的MSP构建方法,并与手动方法进行了可靠性比较 | 研究仅基于368例CT扫描,可能需要更大样本量验证 | 评估自动化MSP构建方法在下颌不对称性评估中的可靠性 | 头CT扫描图像 | digital pathology | NA | deep learning-based method | NA | 3D head CT scans | 368例CT扫描(包括正颌手术患者) |
29 | 2025-05-31 |
A pediatric ECG database with disease diagnosis covering 11643 children
2025-May-26, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05225-z
PMID:40419508
|
research paper | 该研究提出了一个针对0-14岁儿童的心血管疾病诊断的心电图数据库 | 首个专注于儿童的心电图数据库,并提供心血管疾病诊断标签 | 数据仅来自一家医院,可能缺乏地域多样性 | 为儿童心血管疾病的智能诊断提供数据支持 | 0-14岁住院儿童的心电图记录 | 数字病理 | 心血管疾病 | ECG | NA | ECG记录 | 11643名儿童,14190份心电图记录 |
30 | 2025-05-31 |
LucaPCycle: Illuminating microbial phosphorus cycling in deep-sea cold seep sediments using protein language models
2025-May-26, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-60142-4
PMID:40419512
|
research paper | 该研究开发了一个名为LucaPCycle的深度学习模型,用于揭示深海冷泉沉积物中微生物磷循环的过程 | 整合了原始序列和基于蛋白质语言模型ESM2-3B的上下文嵌入,显著提高了对磷循环蛋白家族的检测能力 | 传统序列搜索方法难以检测到具有远程同源性的蛋白质 | 研究深海冷泉沉积物中微生物磷循环的多样性和功能 | 全球冷泉基因和基因组目录中的磷循环蛋白家族 | machine learning | NA | 蛋白质语言模型ESM2-3B | 深度学习模型 | 基因和基因组数据 | 5241个磷循环蛋白家族 |
31 | 2025-05-31 |
RGE-YOLO enables lightweight road packaging bag detection for enhanced driving safety
2025-May-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03240-z
PMID:40419594
|
研究论文 | 提出了一种轻量级深度学习模型RGE-YOLO,用于实时检测道路上的包装袋,以提高驾驶安全性 | RGE-YOLO结合了RepViTBlock、GSConv和EMA机制,优化了计算效率、模型稳定性和检测精度 | 研究仅限于道路包装袋的检测,未涉及其他类型的道路异物 | 提高驾驶安全性,通过实时检测道路上的包装袋 | 道路上的包装袋 | 计算机视觉 | NA | 深度学习 | RGE-YOLO(基于YOLOv8s改进) | 图像 | 6000张增强图像 |
32 | 2025-05-31 |
Evaluation of spatial visual perception of streets based on deep learning and spatial syntax
2025-May-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03189-z
PMID:40419619
|
research paper | 该研究应用深度学习和空间句法评估街道空间视觉感知质量,并分析其与街道构成元素的相关性 | 结合深度学习和人机对抗模型对街景图像进行六维度评分,并通过空间可视化与多元线性回归分析街道质量与构成元素的关系 | 研究区域有限,未涉及不同气候或文化背景下的街道质量对比 | 提升城市街道视觉质量,为精准化街道改造提供数据支持 | 城市街道空间及其视觉构成元素(绿化、行人、墙体等) | computer vision | NA | deep learning, spatial syntax | human-machine adversarial model | street view images | 未明确样本量(研究区域内街道) |
33 | 2025-05-28 |
Correction: Formation permeability estimation using mud loss data by deep learning
2025-May-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03476-9
PMID:40419611
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
34 | 2025-05-31 |
Intelligent traffic congestion forecasting using BiLSTM and adaptive secretary bird optimizer for sustainable urban transportation
2025-May-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-02933-9
PMID:40419628
|
research paper | 该研究提出了一种结合双向长短期记忆网络(BiLSTM)和自适应秘书鸟优化器(ASBO)的深度学习方法,用于智能交通系统中的交通拥堵预测 | 创新点在于将强化学习(RL)与BiLSTM结合,并引入ASBO优化器,显著提高了交通拥堵预测的准确性 | 未提及具体的数据集规模或实际应用场景的限制 | 旨在通过智能交通拥堵预测减少空气污染,提升城市交通的可持续性 | 城市交通网络中的交通拥堵模式 | machine learning | NA | Deep Learning, Reinforcement Learning | BiLSTM, ASBO | traffic data | 基于Traffic Prediction Dataset,具体样本量未提及 |
35 | 2025-05-31 |
Digital image enhancement using deep learning algorithm in 3D heads-up vitreoretinal surgery
2025-May-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-98801-7
PMID:40419711
|
research paper | 本研究旨在利用深度学习算法预测3D头戴式玻璃体视网膜手术中的最佳成像参数,并评估其在提高手术中玻璃体视网膜表面可见性方面的有效性 | 采用两阶段生成对抗网络(GAN)和卷积神经网络(CNN)架构,开发了一种深度学习算法,用于数字图像增强 | 研究仅基于212张手动优化的静态图像和121张匿名高分辨率ERM眼底图像,样本量相对较小 | 提高3D头戴式玻璃体视网膜手术中图像的清晰度、亮度和对比度 | 玻璃体视网膜手术图像和ERM眼底图像 | digital pathology | 视网膜疾病 | 深度学习算法 | GAN和CNN | 图像 | 212张手术视频提取的静态图像和121张ERM眼底图像 |
36 | 2025-05-31 |
Auto-segmentation of cerebral cavernous malformations using a convolutional neural network
2025-May-26, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-025-01738-6
PMID:40420000
|
research paper | 本文提出了一种用于自动分割脑海绵状血管瘤(CCMs)的深度学习模型 | 使用Mask R-CNN和3D CNN(DeepMedic)进行脑实质提取和CCMs分割,并开发了用户友好的图形界面 | 仅基于T2W图像的分割性能仍有提升空间(Dice系数0.741±0.028) | 实现脑海绵状血管瘤的自动化分割以辅助临床分析 | 199例Gamma Knife治疗计划数据(171例单CCM,28例多CCM) | digital pathology | cerebral cavernous malformations | MRI | Mask R-CNN, 3D CNN (DeepMedic) | image | 199例Gamma Knife检查数据(含神经外科医生手动标注的CCM区域) |
37 | 2025-05-31 |
A novel MRI-based deep learning imaging biomarker for comprehensive assessment of the lenticulostriate artery-neural complex
2025-May-26, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-025-01676-3
PMID:40420012
|
研究论文 | 开发一种基于深度学习的MRI成像生物标志物,用于全面评估豆纹动脉-神经复合体 | 利用ResNet18框架从豆纹动脉供血区域提取深度学习特征,并将其作为成像生物标志物,首次全面评估豆纹动脉-神经复合体 | 样本量较小,仅79名患者参与研究 | 开发一种新的成像生物标志物,用于评估豆纹动脉-神经复合体的功能状态 | 豆纹动脉供血区域和豆纹动脉-神经复合体 | 数字病理学 | 脑血管疾病 | MRI, DTI, ASL | ResNet18 | 图像 | 79名患者 |
38 | 2025-05-31 |
Evolution of deep learning tooth segmentation from CT/CBCT images: a systematic review and meta-analysis
2025-May-26, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-025-05984-6
PMID:40420051
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了深度学习在牙齿分割中的演变和性能 | 总结了多种深度学习算法在牙齿分割中的应用,并按其骨干结构进行了分类,同时整合了注意力机制的卷积模型成为新话题 | 需要标准化协议和开放标记数据集 | 评估深度学习在牙齿分割中的演变和性能 | 人类牙齿分割 | 计算机视觉 | NA | CT/CBCT | CNN, U-Net, Transformer, 注意力机制模型 | 图像 | 30项研究(28项用于荟萃分析) |
39 | 2025-05-31 |
A comparative analysis of deep learning models for assisting in the diagnosis of periapical lesions in periapical radiographs
2025-May-26, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-025-06104-0
PMID:40420083
|
研究论文 | 本研究比较了ConvNeXt和ResNet34两种深度学习模型在辅助诊断根尖周病变中的效果 | 首次评估了深度学习模型对新手牙医诊断根尖周病变的辅助作用,并比较了两种模型的性能差异 | 研究仅使用了根尖周X线片,未考虑其他影像学检查方法 | 评估深度学习模型在辅助诊断根尖周病变中的应用价值 | 根尖周病变的X线影像 | 数字病理学 | 根尖周病变 | 深度学习 | CNN(ConvNeXt和ResNet34) | 图像 | 1305张根尖周X线片(训练集1044张,验证集261张)和800颗单独牙齿的X线片 |
40 | 2025-05-31 |
Surfactant representation using COSMO screened charge density for adsorption isotherm prediction using Physics-Informed Neural Network (PINN)
2025-May-26, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-025-01027-y
PMID:40420147
|
research paper | 本研究开发了一种基于物理信息神经网络(PINN)的吸附模型,用于预测表面活性剂的吸附行为,整合了分子特征、测试条件和固体性质 | 将COSMO屏蔽电荷密度描述符整合到物理信息深度学习模型中,以预测表面活性剂吸附等温线,提供了一种新颖的方法来准确表示表面活性剂分子 | 模型在全新结构的表面活性剂预测上表现一般(RMSE 2.95 mg/g) | 开发一个包含分子特征、测试条件和固体性质的吸附模型,以预测表面活性剂的吸附行为 | 56个吸附等温线和20种阴离子和非离子表面活性剂,在不同条件下以沙子和氧化硅为固体 | machine learning | NA | Conductor-like Screening Model (COSMO), Physics-Informed Neural Network (PINN) | Physics-Informed Neural Network (PINN), artificial neural networks (ANN) | adsorption isotherms, molecular descriptors | 56 adsorption isotherms and 20 types of surfactants |