本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 381 | 2026-02-13 |
Development of a deep learning-based histological evaluation model for critical-size bone defect healing in rats - an objective tool
2026-Apr, Bone
IF:3.5Q2
DOI:10.1016/j.bone.2026.117791
PMID:41525839
|
研究论文 | 本研究开发了一种基于深度学习的组织学评估模型,用于客观评估大鼠临界尺寸骨缺损的愈合情况 | 首次将改进的U-Net模型应用于Movat五色染色组织切片,实现骨愈合阶段的语义分割与分类,并开发了可量化的骨愈合评分系统 | 研究仅基于大鼠模型,尚未在临床人体样本中验证;训练数据量相对有限(n=669) | 开发客观、可扩展的骨愈合组织学评估工具,减少人工评估的主观性和时间消耗 | 大鼠股骨临界尺寸缺损模型的组织学切片 | 数字病理学 | 骨科疾病 | 组织学染色(Movat pentachrome染色) | CNN | 图像 | 669张组织学切片图像 | 未明确说明 | 改进的U-Net | Spearman相关系数, 平均绝对偏差, ICC(组内相关系数) | NA |
| 382 | 2026-02-13 |
Optimized data augmentation for osteosarcoma detection in deep and lightweight networks
2026-Apr, Journal of orthopaedics
IF:1.5Q3
DOI:10.1016/j.jor.2025.12.013
PMID:41675170
|
研究论文 | 本文提出了一种系统性的深度学习方法,研究预处理和数据增强对骨肉瘤图像分类的影响 | 通过控制数据增强设置(无增强及每类合成图像数量)系统研究数据集扩大对模型泛化性能的影响,并强调增强效果与模型类型相关 | 统计分析显示模型间差异不显著(p > 0.05),可能限制了对最优模型选择的明确结论 | 优化数据增强策略以提升骨肉瘤检测在深度和轻量网络中的性能 | 骨肉瘤的H&E染色组织病理学图像 | 计算机视觉 | 骨肉瘤 | 组织病理学成像 | CNN | 图像 | 来自公开UT Southwestern/UT Dallas骨肉瘤数据集的图像,增强设置包括每类650、1000和1500张合成图像 | TensorFlow, Keras | VGG19, InceptionV3, InceptionResNetV2, NasMobileNet | 准确率, 敏感度, 特异度, ROC-AUC | NA |
| 383 | 2026-02-13 |
MetaChrome: an open-source, user-friendly tool for automated metaphase chromosome analysis
2026-Mar, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2025.12.013
PMID:41475630
|
研究论文 | 本文介绍了一款名为MetaChrome的开源软件平台,该平台专为自动中期染色体分析而设计,集成了深度学习模型进行染色体分割和FISH信号共定位分析 | 开发了首个结合图形用户界面、基于微调深度学习模型(Cellpose)进行自动中期染色体分割与FISH信号共定位分析的开源软件平台 | 未明确提及模型在多样化或低质量图像上的泛化能力,也未与其他开源工具进行系统性比较 | 开发一个用户友好、开源的工具,以解决自动中期染色体分割和DNA FISH信号共定位分析的挑战,促进高通量染色体分析工作流程 | 中期染色体图像,特别是用于DNA荧光原位杂交(FISH)分析的图像 | 数字病理学 | NA | DNA荧光原位杂交(DNA FISH),高通量成像(HTI) | 深度学习模型(基于Cellpose) | 图像 | NA | NA | Cellpose | 分割准确性 | NA |
| 384 | 2026-02-13 |
A Few-Shot Learning Framework for Time-Varying Scientific Data Generation via Conditional Diffusion Model
2026-Mar, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2026.3656934
PMID:41570098
|
研究论文 | 本文提出了一种基于条件扩散模型的少样本学习框架,用于生成时变科学数据,以解决科学可视化中数据稀疏的问题 | 引入了一种时间感知的UNet架构和噪声感知损失函数,能够在仅使用少量训练样本(如1、3或5个)的情况下,通过条件扩散模型实现泛化能力和性能的平衡 | 未明确提及计算资源需求或模型在更复杂数据集上的可扩展性限制 | 解决科学可视化中因模拟计算成本高和数据存储挑战导致的数据稀疏问题,提升深度学习模型的训练效果 | 时变科学数据,具体应用于空间超分辨率、时间超分辨率和变量转换三个科学可视化任务 | 科学可视化 | NA | 条件扩散模型 | 扩散模型 | 体积数据(volumetric data) | 少量训练样本(例如1、3或5个) | NA | 时间感知UNet | 定量评估和定性评估 | NA |
| 385 | 2026-02-13 |
Deep learning deciphers behavioral states from muscle activation patterns
2026-Mar, Journal of pharmacological sciences
IF:3.0Q2
DOI:10.1016/j.jphs.2026.01.007
PMID:41672643
|
研究论文 | 本文提出了一种基于深度学习的多部位肌电图分析方法,用于自动分类小鼠的行为状态 | 利用深度学习分析多部位肌电图数据,实现行为状态的自动分类,提供了一种客观、可扩展的行为评估框架 | NA | 开发一种自动、客观的行为分类方法,以克服手动视频观察的限制 | 小鼠的肢体和颈部肌肉 | 机器学习 | NA | 肌电图记录 | CNN | 肌电图信号 | NA | NA | 自定义卷积神经网络 | 分类准确率 | NA |
| 386 | 2026-02-13 |
Deep learning approaches to map individual differences in macroscopic neural structure with variations in spatial navigation behavior
2026-Feb-15, Neuropsychologia
IF:2.0Q3
|
研究论文 | 本研究采用深度学习方法来探索年轻人群大脑宏观结构与空间导航行为个体差异之间的关联 | 首次应用图卷积神经网络和3D卷积神经网络等深度学习模型,以数据驱动方式分析复杂大脑结构特征与空间导航能力的关系 | 研究样本量较小(N=90),仅使用单一行为测量指标,可能限制了预测能力 | 探究健康年轻成年人大脑结构特征与空间导航能力之间的关联 | 年轻成年人群 | 机器学习 | NA | T1 MRI | GCNN, 3DCNN | 图像 | 90名参与者 | NA | 图卷积神经网络, 3D卷积神经网络 | 预测值 | NA |
| 387 | 2026-02-13 |
CT-free attenuation and scatter correction of [11C]CFT brain PET using a Bi-directional matching network
2026-Feb-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2026.121721
PMID:41539466
|
研究论文 | 本研究提出并扩展了一种基于双向匹配网络的CT-free衰减和散射校正方法,用于[11C]CFT脑部PET成像,旨在避免CT相关的辐射暴露 | 采用双向离散过程匹配网络,通过离散一致性约束在未校正和完全校正的PET图像之间建立可逆变换,无需生成伪CT或依赖解剖先验信息 | 研究仅在90名帕金森综合征患者中进行评估,样本量相对有限,且方法在其他PET示踪剂或疾病中的泛化能力尚未验证 | 开发一种无需CT扫描的PET衰减和散射校正方法,以减少辐射暴露并保持定量准确性 | 帕金森综合征患者的[11C]CFT脑部PET图像 | 医学影像分析 | 帕金森病 | PET成像,深度学习 | Bi-DPM网络 | PET图像 | 90名帕金森综合征患者 | NA | Bi-DPM网络 | MAE, PSNR, SSIM, CCC, PCC, Dice系数 | NA |
| 388 | 2026-02-13 |
Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg
2026-Feb-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2026.121729
PMID:41548822
|
研究论文 | 本研究提出了一种基于SynthSeg框架的数据驱动采样策略,旨在提升胎儿脑部MRI分割模型在对比度和病理差异下的泛化能力 | 引入了一种新颖的数据驱动训练时采样策略,充分利用训练数据集的多样性,增强网络对领域偏移(如生理和采集环境差异)的泛化能力 | 在异常较少的情况下,模型性能略有下降 | 训练能够自动分割具有广泛领域偏移(包括病理形状差异)的胎儿脑部MRI的网络 | 胎儿脑部磁共振成像(MRI) | 计算机视觉 | 胎儿神经发育异常 | 磁共振成像(MRI) | CNN | 图像 | NA | NA | NA | 分割质量(基于统计显著性p<1e-4) | NA |
| 389 | 2026-02-13 |
Neural-linguistic analysis for Alzheimer's detection: A deep learning approach informed by cognitive neuroscience
2026-Feb-15, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2026.121739
PMID:41570955
|
研究论文 | 本文提出了一种受认知神经科学启发的深度学习框架COASTAL,用于通过语音分析检测阿尔茨海默病 | 提出了认知声学符号转换(COASTAL)框架,该框架模拟了大脑的分层语音处理通路,将声学模式转换为离散符号元素,然后进行上下文分析,从而克服了传统方法在捕捉语义认知内容和处理老年人发音变异方面的局限性 | 研究仅在ADReSSo语料库上进行了评估,样本来源和规模可能存在限制;未详细讨论模型在不同人口统计学群体或疾病阶段中的泛化能力 | 开发一种非侵入性、基于语音的早期阿尔茨海默病检测方法 | 阿尔茨海默病患者的语音数据 | 自然语言处理 | 阿尔茨海默病 | 语音分析,认知声学符号转换 | 深度学习 | 语音 | ADReSSo语料库(具体样本数未在摘要中提供) | NA | 分层转换架构(具体名称如ResNet等未提及) | 准确率 | NA |
| 390 | 2026-02-13 |
Intelligent navigation of potential energy surfaces: leveraging deep reinforcement learning paradigms for accelerated discovery of stable nickel nanoclusters
2026-Feb-12, Nanoscale
IF:5.8Q1
DOI:10.1039/d5nr04468e
PMID:41532242
|
研究论文 | 本文提出了一种名为Deepcluster的深度强化学习框架,用于高效导航复杂高维势能面,以发现镍纳米团簇的全局能量最小结构 | 结合深度强化学习与原子中心对称函数,实现无需预定义数据集的自主探索与优化,超越传统全局优化算法的局限 | 方法依赖于特定势能模型(如EMT),且在大规模或更复杂体系中的普适性有待进一步验证 | 加速复杂功能纳米材料(如镍纳米团簇)的稳定结构发现,用于催化和能源应用 | 镍纳米团簇(Ni_n,n=特定尺寸) | 机器学习 | NA | 深度强化学习,原子中心对称函数(ACSFs),有效介质理论(EMT)势,BFGS算法 | 深度强化学习(基于actor-critic网络),多层感知机(MLP) | 结构配置数据(能量、力、结构标志) | 一系列镍纳米团簇(Ni_n,具体尺寸未明确数量,但涉及多个n值) | TensorFlow或PyTorch(未明确指定,但基于深度神经网络),TRPO算法 | 多层感知机(MLP),actor-critic网络 | 全局能量最小结构的发现准确性,结合能,热稳定性(通过分子动力学模拟验证) | NA(未明确指定GPU或云平台,但涉及并行遗传算法和第一性原理计算) |
| 391 | 2026-02-13 |
Generative deep learning synthesizes high signal-to-noise ratio sensitivity maps for PET from low count direct normalization data
2026-Feb-12, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ae3ec6
PMID:41604704
|
研究论文 | 本文提出了一种基于生成对抗网络的PET灵敏度图合成方法,用于从低计数直接归一化数据生成高信噪比的灵敏度图 | 开发了一种结合灵敏度图特征与生成建模的新颖PET数据处理和图像重建流程,通过条件注意力引导的生成对抗网络保留灵敏度图的几何和探测器特定特征 | 未明确说明模型在不同PET扫描仪或临床环境中的泛化能力限制 | 解决从低计数直接归一化数据高效获取高信噪比PET灵敏度图的挑战 | PET灵敏度图、Hoffman脑模体、对比度模体、均匀圆柱模体的图像 | 医学影像处理 | NA | 直接归一化、生成对抗网络 | GAN | PET灵敏度图数据、图像数据 | 使用Hoffman脑模体、对比度模体和均匀圆柱模体的数据进行评估 | NA | 条件注意力引导的生成对抗网络 | 峰值信噪比、结构相似性指数、归一化均方根误差 | NA |
| 392 | 2026-02-13 |
Polarization-Programmable 2D Sb2S2O Photodetectors for High-Precision Object Identification
2026-Feb-12, The journal of physical chemistry letters
IF:4.8Q1
DOI:10.1021/acs.jpclett.5c04042
PMID:41631389
|
研究论文 | 本文报道了一种新型二维三元锑硫族氧化物Sb2S2O,并展示了其在宽光谱范围内优异的光响应性能和偏振角依赖的灵敏度,结合深度学习算法,实现了高精度物体识别 | 首次报道了具有低对称性层状结构和显著面内各向异性的新型二维三元锑硫族氧化物Sb2S2O,并利用其偏振角可调特性实现了光探测器的双模式智能成像 | NA | 开发用于下一代智能光电探测和自适应视觉技术的新型二维材料及器件 | 二维三元锑硫族氧化物Sb2S2O材料及其光电器件 | 机器学习 | NA | NA | NA | 图像 | NA | NA | NA | 响应度(11.3 A/W),比探测率(6.5×10^? Jones),二向色比(约1.48) | NA |
| 393 | 2026-02-13 |
Large-Scale Histological Image Dataset with Metadata for Colorectal Cancer Microenvironment
2026-Feb-12, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-026-06675-9
PMID:41673045
|
研究论文 | 本文介绍了一个用于结直肠癌肿瘤微环境分析的大规模组织学图像数据集HMU-CRC-Hist550K,并展示了其在深度学习模型基准测试中的应用 | 构建了首个包含55万张标注图像块、涵盖8种不同TME组织类别的大规模结直肠癌组织学图像数据集,解决了该领域数据稀缺的问题 | 数据集主要来源于公开可用的样本,可能无法完全代表所有临床场景的多样性 | 为结直肠癌肿瘤微环境的AI辅助分析提供高质量数据资源,支持诊断、分子亚型推断和个体化治疗规划 | 结直肠癌组织学图像中的肿瘤微环境组织成分 | 数字病理学 | 结直肠癌 | 组织学成像 | 深度学习模型 | 组织学图像 | 来自500张全切片图像的55万张标注图像块 | NA | NA | NA | NA |
| 394 | 2026-02-13 |
Multimodal MRI reveals hypothalamic structural-functional alterations associated with bone mineral density loss in postmenopausal women
2026-Feb-12, Brain imaging and behavior
IF:2.4Q2
DOI:10.1007/s11682-026-01077-2
PMID:41673184
|
研究论文 | 本研究利用多模态MRI揭示了绝经后女性骨密度降低与下丘脑亚区结构和功能改变之间的关联 | 首次在绝经后女性中,结合深度学习分割、功能连接分析和白质束形态分析,系统地探究了骨密度降低与特定下丘脑亚区的多模态改变之间的关联 | 部分白质束的微观结构和形态学发现因多重比较应被视为探索性结果,样本量相对较小 | 阐明绝经后女性骨密度降低与下丘脑亚区结构和功能改变之间的关系 | 绝经后女性(包括骨质疏松、骨量减少和健康对照组) | 医学影像分析 | 骨质疏松 | 多模态MRI(3T磁共振成像) | 深度学习 | MRI图像 | 54名绝经后女性(18名骨质疏松,18名骨量减少,18名健康对照) | NA | NA | FWE校正的p值,相关系数r | NA |
| 395 | 2026-02-13 |
Automatic classification of kidney stone components based on smartphone microscopy and the GoogLeNet model
2026-Feb-12, BMC urology
IF:1.7Q3
DOI:10.1186/s12894-026-02080-x
PMID:41673817
|
研究论文 | 本研究开发了一种基于智能手机显微镜和GoogLeNet模型的肾结石成分自动分类系统 | 将智能手机显微镜(TIPSCOPE)与GoogLeNet架构结合,实现低成本、快速、准确的肾结石成分自动分类 | 碳酸磷灰石结石的分类性能相对较低(F1=0.69),样本量较小(共140个样本) | 开发一种快速、准确且经济高效的肾结石成分自动分类系统 | 手术提取的肾结石样本 | 计算机视觉 | 肾结石 | 智能手机显微镜成像 | CNN | 图像 | 140个肾结石样本,共840张图像 | NA | GoogLeNet | 准确率, F1分数, 精确率, 召回率 | NA |
| 396 | 2026-02-13 |
Chemical Feature Engineering and Defect-Aware Structural Fingerprint Representations for Complex Defects in 2D Materials
2026-Feb-12, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.5c02100
PMID:41674448
|
研究论文 | 本文提出了一种结合化学特征工程和缺陷感知结构指纹表示的方法,用于改进二维材料中复杂缺陷的描述和预测 | 通过工程化化学描述符和构建源自经典力场启发描述符(CFID)的结构特征,结合Hellinger距离导出的缺陷感知特征,在减少50%特征数量的同时改善了高维特征空间中的数据点区分能力 | 预测高度复杂和非线性的目标(如HOMO-LUMO能隙)仍然具有挑战性,所有扩展方法均未超越基线描述符的性能 | 开发可解释且计算高效的描述符,用于二维材料中多缺陷的表征和预测 | 二维材料中的复杂缺陷 | 材料信息学 | NA | 化学特征工程,结构指纹表示,Hellinger距离 | NA | 结构特征数据,化学描述符数据 | NA | NA | NA | 预测误差,不确定性,稳定性 | NA |
| 397 | 2026-02-13 |
Applicability of mitotic figure counting by deep learning: a development and pan-cancer validation study
2026-Feb-12, FEBS open bio
IF:2.8Q3
DOI:10.1002/2211-5463.70210
PMID:41676879
|
研究论文 | 本研究开发了一种基于深度学习的核分裂象计数方法,并在多个外部验证数据集中评估了其预后影响 | 开发了一种深度学习方法来计数核分裂象,并在七种不同癌症类型的13个患者队列中进行了大规模外部验证,展示了其在自动化病理工作和扩展应用至更多癌症类型(如前列腺癌)中的潜力 | 在结直肠癌中,自动核分裂象计数与患者结局的显著关联未得到证实 | 评估深度学习在核分裂象计数中的适用性及其预后价值 | 来自七种不同癌症类型的13个患者队列,共14,571个患者样本 | 数字病理学 | 乳腺癌, 前列腺癌, 结直肠癌, 其他癌症 | 苏木精和伊红染色 | 深度学习 | 全切片图像 | 14,571个患者样本 | NA | NA | 单变量Cox生存分析 | NA |
| 398 | 2026-02-13 |
An Enthalpy-Entropy Compensated Ionogel With a Broadband Viscoelastic Plateau for Non-Invasive and High-Fidelity Neurointerfaces
2026-Feb-12, Advanced materials (Deerfield Beach, Fla.)
DOI:10.1002/adma.202521208
PMID:41677067
|
研究论文 | 本文设计了一种基于动态焓熵平衡的粘弹性离子凝胶,用于实现非侵入式、高保真的神经接口,以解决在动态不规则皮肤上进行高质量电生理记录(如脑电图)的挑战 | 提出了一种由动态焓熵平衡调控的粘弹性离子凝胶,其独特的双连续纳米结构实现了跨越九个数量级频率(10^-2至10^7 Hz)和宽温区(-30°C至40°C)的频率无关粘弹性平台,显著降低了皮肤-电极阻抗 | 未明确说明离子凝胶的长期生物相容性、大规模制造可行性以及在更极端环境条件下的性能稳定性 | 开发一种能同时具备液体般适应性和固体般稳定性的软生物电子材料,以实现非侵入式、高保真的电生理信号记录与解码 | 用于神经接口的粘弹性离子凝胶材料及其在脑电图信号记录与情感状态分类中的应用 | 软生物电子学 | NA | 电生理记录(脑电图),深度学习信号解码 | 深度学习框架 | 脑电图信号 | NA | NA | NA | 分类准确率 | NA |
| 399 | 2026-02-13 |
Foundation models in radiology: a primer for pediatric radiologists
2026-Feb-12, Pediatric radiology
IF:2.1Q2
DOI:10.1007/s00247-026-06544-y
PMID:41677830
|
综述 | 本文介绍了基础模型在放射学,特别是儿科放射学中的应用原理、现状、挑战及未来方向 | 系统性地将基础模型这一前沿人工智能范式引入儿科放射学领域,并针对该领域特有的数据稀缺、罕见病理和解剖变异等挑战,探讨了其作为灵活骨干网络的适应性潜力 | 儿科影像数据有限、疾病谱和解剖结构独特、缺乏儿科特异性验证、存在模型幻觉、可解释性不足、资源分配不均以及可能导致放射科医生技能退化的风险 | 探讨基础模型在儿科放射学中的原理、应用、挑战及未来发展方向,以促进其在临床实践中的安全、公平和有效整合 | 基础模型及其在儿科放射学中的应用 | 放射学 | 儿科疾病 | 自监督学习,迁移学习,参数高效微调,联邦学习,持续学习,合成数据生成 | 基础模型 | 影像数据,文本报告 | NA | NA | NA | NA | NA |
| 400 | 2026-02-13 |
ChronicDPipredictor: an interpretable deep learning framework for chemical chronic and subchronic toxicity assessment
2026-Feb-12, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-026-11482-w
PMID:41678082
|
研究论文 | 本研究开发了一个名为ChronicDPipredictor的可解释深度学习框架,用于评估化学物质的慢性和亚慢性毒性 | 开发了一个结合可解释性(如SHAP分析)和结构警报提取的深度学习框架,用于化学毒性评估,并提供了公开可用的网络服务器 | 模型性能在亚慢性毒性的多类分类中相对较低(准确率0.80),且可能受限于所使用的指纹表示和数据集 | 评估化学物质的慢性和亚慢性毒性,以支持化合物重复剂量毒性的风险评估 | 化学物质 | 机器学习 | NA | NA | 深度学习 | 化学指纹(MACCS、PubChem、KRFP) | NA | NA | NA | 准确率 | NA |