本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
381 | 2025-06-22 |
Combination of ultrasound-based radiomics and deep learning with clinical data to predict response in breast cancer patients treated with neoadjuvant chemotherapy
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1525285
PMID:40538839
|
研究论文 | 本研究结合超声影像、深度学习特征和临床数据,构建了一个预测乳腺癌患者新辅助化疗后病理完全缓解的融合模型 | 首次将超声影像的放射组学特征、深度学习特征与临床数据相结合,构建了一个预测性能优越的融合模型 | 研究为回顾性设计,样本来自两个医疗中心,可能存在选择偏倚 | 预测乳腺癌患者新辅助化疗后的病理完全缓解(pCR) | 643名经病理确诊的乳腺癌患者 | 数字病理 | 乳腺癌 | 超声成像、机器学习算法 | 融合模型(结合临床模型、放射组学模型和深度学习模型) | 超声图像、临床数据 | 643例患者(中心1:372例;中心2:271例) |
382 | 2025-06-22 |
A dual-branch deep learning model based on fNIRS for assessing 3D visual fatigue
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1589152
PMID:40538859
|
研究论文 | 本文提出了一种基于fNIRS的双分支深度学习模型,用于评估3D视觉疲劳 | 首次构建了基于fNIRS的深度学习模型,用于评估3D视觉疲劳,实现了端到端的自动特征提取和分类 | 未来工作可以探索模型在其他类型疲劳评估中的适用性,并进一步优化其在真实场景中的性能 | 提升用户体验并优化立体3D技术的性能 | 20名正常受试者(平均年龄:24.6±0.88岁;范围:23-26岁;13名男性) | 机器学习 | NA | fNIRS | 双分支卷积网络与transformer模块结合 | 时间序列fNIRS数据 | 20名正常受试者 |
383 | 2025-06-22 |
IRGL-RRI: interpretable graph representation learning for plant RNA-RNA interaction discovery
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1617495
PMID:40538878
|
研究论文 | 提出了一种可解释的图表示学习模型IRGL-RRI,用于准确预测植物RNA-RNA相互作用 | 结合Kolmogorov-Arnold Networks (KAN)和多尺度融合的RRI建模方法,提高了模型的可解释性和预测准确性 | 未提及模型在计算资源消耗或特定植物种类上的局限性 | 提高植物RNA-RNA相互作用预测的准确性和可解释性 | 植物RNA分子及其相互作用 | 机器学习 | NA | 图表示学习、KAN网络 | IRGL-RRI(基于图表示学习的模型) | RNA序列数据 | 公开数据集(具体数量未提及) |
384 | 2025-06-22 |
Class imbalance in multi-resident activity recognition: an evaluative study on explainability of deep learning approaches
2025, Universal access in the information society
IF:2.1Q3
DOI:10.1007/s10209-024-01123-0
PMID:40538921
|
research paper | 该研究探讨了在多居民活动识别中类别不平衡问题,并评估了深度学习方法的可解释性 | 研究针对多居民场景中的类别不平衡问题,探索了LSTM和双向LSTM网络的有效性,并提高了深度学习模型的透明度和可靠性 | 研究仅基于三个高度不平衡的智能家居数据集进行评估,可能无法涵盖所有实际应用场景 | 提高多居民活动识别系统的可信度和性能 | 多居民家庭中的活动识别 | machine learning | NA | 深度学习 | LSTM, Bidirectional LSTM | 传感器数据 | 三个高度不平衡的智能家居数据集 |
385 | 2025-06-22 |
Real-world application of a 3D deep learning model for detecting and localizing cerebral microbleeds
2024-09-26, Acta neurochirurgica
IF:1.9Q2
DOI:10.1007/s00701-024-06267-9
PMID:39325068
|
研究论文 | 本研究验证了一种3D深度学习模型在真实世界环境中检测和定位脑微出血(CMBs)的性能 | 该模型不仅能检测CMBs,还能识别其解剖位置,且在真实世界环境中验证了其性能 | 需要更大规模和更多样化的人群研究以确立其临床实用性 | 验证3D深度学习模型在检测和定位脑微出血(CMBs)中的性能 | 脑微出血(CMBs)患者 | 数字病理学 | 脑血管疾病 | 3D深度学习 | 3D深度学习模型 | 医学影像 | 33名患者(21名有CMBs,12名无CMBs),共116个CMBs |
386 | 2025-06-22 |
Deep Learning-Based Image Analysis of Liver Steatosis in Mouse Models
2023-08, The American journal of pathology
DOI:10.1016/j.ajpath.2023.04.014
PMID:37236505
|
research paper | 本研究开发了一种基于深度神经网络的模型,用于量化肝组织切片中的微泡和大泡脂肪变性 | 使用深度学习模型自动识别和量化肝脂肪变性,与病理学家评估和EchoMRI测量结果高度一致 | 研究仅基于小鼠模型,未在人类样本中验证 | 开发一种高效量化非酒精性脂肪肝病的方法,用于临床前药物效果分析 | 野生型小鼠和两种基因修饰小鼠模型的肝组织 | digital pathology | nonalcoholic fatty liver disease | hematoxylin-eosin staining, whole slide imaging | deep neural network | image | 101张全切片图像 |
387 | 2025-06-21 |
Computational models for prediction of m6A sites using deep learning
2025-Aug, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2025.04.011
PMID:40268153
|
研究论文 | 本文综述并验证了多种深度学习方法在预测m6A位点上的应用,展示了深度学习模型在此领域的潜力 | 验证了多种深度学习方法在m6A位点预测上的效果,包括之前在此领域未充分利用的方法和专为生物序列设计的预训练模型 | 未提及具体的数据集大小或模型性能的详细比较 | 提高m6A修饰位点的准确识别,以更好地理解其功能和机制 | m6A修饰位点 | 机器学习 | NA | 深度学习 | 预训练模型及其他基础深度学习方法 | 生物序列数据 | 基准数据集(具体数量未提及) |
388 | 2025-06-21 |
Accuracy and time efficiency of deep learning-based three-dimensional crown segmentation on intraoral scanning: a systematic review and meta-analysis
2025-Aug, Journal of dentistry
IF:4.8Q1
DOI:10.1016/j.jdent.2025.105842
PMID:40414275
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了基于深度学习的口腔内扫描三维牙冠分割的准确性和时间效率 | 首次系统评估深度学习在口腔内扫描牙冠分割中的性能,并比较其与人工方法的时间效率 | 纳入研究存在数据选择和指标测试的异质性,且目前算法尚不能实现精确的牙龈边界分割 | 评估深度学习在口腔内扫描牙冠分割中的准确性和时间效益 | 口腔内扫描图像中的牙冠结构 | 数字病理 | 口腔疾病 | 深度学习图像分割 | 深度学习模型(未指定具体架构) | 三维口腔内扫描图像 | 44项符合纳入标准的研究(来自1220篇初筛文献) |
389 | 2025-06-21 |
Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging
2025-Jul, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04739-1
PMID:39692759
|
research paper | 本研究探讨了结合深度学习重建和可变翻转角进化的HASTE(iHASTE)在妇科MRI中的临床效用 | 首次将深度学习重建技术应用于HASTE序列,提高了图像质量和抗伪影能力 | 样本量较小(79例),且iHASTE在病灶边缘显示方面评分低于BLADE和TSE | 评估iHASTE在妇科MRI中的临床应用价值 | 接受妇科MRI检查的患者 | 医学影像 | 妇科疾病 | MRI(HASTE、BLADE、TSE序列) | 深度学习重建 | 医学影像 | 79例患者(无抗痉挛药组)和79例匹配对照(有抗痉挛药组) |
390 | 2025-06-21 |
A novel artificial intelligence segmentation model for early diagnosis of bladder tumors
2025-Jul, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04715-9
PMID:39738572
|
research paper | 开发了一种基于深度学习的智能诊断系统BTS-Net,用于早期膀胱癌的准确诊断 | 提出了基于transformer的新型膀胱肿瘤分割网络BTS-Net,能够实时处理手术视频并准确分割潜在卫星病灶 | 研究仅在中南医院收集的数据上进行验证,需要进一步的外部验证 | 提高早期膀胱肿瘤的识别率,减少漏诊 | 膀胱癌患者的手术视频数据 | digital pathology | bladder cancer | deep learning | transformer-based BTS-Net | video | 273名膀胱癌患者的TURBT手术视频数据 |
391 | 2025-06-21 |
Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model
2025-Jul, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04766-y
PMID:39747670
|
research paper | 本研究开发并验证了一种基于MRI的多模态深度学习放射组学(MDLR)模型,用于提高子宫内膜癌术前肌层浸润(MI)的判别准确性 | 结合临床特征和深度学习特征(DLS)构建MDLR模型,显著提高了术前MI判别的准确性 | 研究为回顾性设计,可能存在选择偏倚,且模型性能需在前瞻性研究中进一步验证 | 提升子宫内膜癌术前肌层浸润状态的判别准确性以辅助治疗决策 | 1139例子宫内膜癌患者 | digital pathology | endometrial cancer | MRI, deep learning radiomics | ResNet18, Integrated Sparse Bayesian Extreme Learning Machine | MRI图像 | 1139例来自五个独立中心的患者(年龄24-89岁) |
392 | 2025-06-21 |
Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence
2025-Jul, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29708
PMID:39781607
|
研究论文 | 本文探讨了多参数磁共振成像(mpMRI)结合人工智能(AI)在评估胰腺导管腺癌(PDAC)生物学侵袭性和预后中的应用 | 结合AI的mpMRI能够提供形态和功能信息,量化肿瘤内特征,预测PDAC的生物学特性和预后 | 当前基于AI的PDAC模型主要基于单一模态,样本量较小,技术可重复性和生物学解释存在挑战 | 评估PDAC的生物学侵袭性和预后,推动个性化医疗 | 胰腺导管腺癌(PDAC) | 数字病理 | 胰腺癌 | 多参数磁共振成像(mpMRI) | 深度学习 | 图像 | 相对较小的样本量 |
393 | 2025-06-21 |
Visualizing Preosteoarthritis: Updates on UTE-Based Compositional MRI and Deep Learning Algorithms
2025-Jul, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29710
PMID:39792443
|
综述 | 本文综述了基于超短回波时间的MRI技术和深度学习算法在骨关节炎早期检测中的应用 | 结合超短回波时间MRI和深度学习算法,革新了MRI分析方式,实现了对短T2组织的直接可视化和定量评估 | 证据等级为5级,技术效能处于第2阶段,表明研究尚处于早期阶段 | 探索骨关节炎早期检测和管理的先进成像技术和分析方法 | 骨关节炎相关的短T2组织,如软骨、半月板/唇、韧带和肌腱 | 数字病理学 | 骨关节炎 | 超短回波时间MRI (UTE-MRI) | 深度学习 (DL) | MRI图像 | NA |
394 | 2025-06-21 |
AI-Driven Detection and Measurement of Keratinized Gingiva in Dental Photographs: Validation Using Reference Retainers
2025-Jul, Journal of clinical periodontology
IF:5.8Q1
DOI:10.1111/jcpe.14164
PMID:40195567
|
研究论文 | 本文评估了一种深度学习模型在牙科照片中检测角化牙龈的能力,并使用参考保持器验证其临床适用性 | 首次提出能够可靠识别全口角化牙龈的AI模型,并通过参考保持器进行了全面验证 | 对后牙区域的预测需要进一步改进 | 评估深度学习模型在牙科照片中检测角化牙龈的准确性及其临床应用价值 | 角化牙龈的检测与测量 | 数字病理 | 牙科疾病 | 深度学习 | DeepLabv3 with ResNet50 backbone | 图像 | 32名受试者的576张六分照片 |
395 | 2025-06-21 |
Development and application of deep learning-based diagnostics for pathologic diagnosis of gastric endoscopic submucosal dissection specimens
2025-Jul, Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
IF:6.0Q1
DOI:10.1007/s10120-025-01612-y
PMID:40232558
|
研究论文 | 开发并评估了一种用于诊断胃内镜黏膜下剥离术(ESD)标本的深度学习模型 | 首次将深度学习模型应用于ESD标本的肿瘤和黏膜下浸润检测,显著提高了诊断效率和准确性 | 研究仅基于366个ESD标本,样本量相对有限 | 开发一种能够准确诊断胃ESD标本的深度学习模型 | 胃ESD标本中的腺癌组织 | 数字病理学 | 胃癌 | 深度学习 | CNN | 图像 | 366个ESD标本,包含2257个标注区域和83,839个图像块 |
396 | 2025-06-21 |
Deep learning-assisted detection of meniscus and anterior cruciate ligament combined tears in adult knee magnetic resonance imaging: a crossover study with arthroscopy correlation
2025-Jul, International orthopaedics
IF:2.0Q2
DOI:10.1007/s00264-025-06531-2
PMID:40293511
|
研究论文 | 本研究比较了医生在使用和不使用深度学习模型辅助下,对膝关节MRI中半月板和前交叉韧带撕裂的诊断性能 | 使用深度学习模型辅助医生提高对膝关节MRI中半月板和前交叉韧带撕裂的诊断准确性 | 样本量相对较小(186例MRI检查),且仅评估了Keros®算法 | 比较医生在使用和不使用深度学习模型辅助下对膝关节MRI中半月板和前交叉韧带撕裂的诊断性能 | 膝关节MRI图像 | 数字病理 | 膝关节损伤 | MRI | 深度学习模型(Keros®算法) | 图像 | 186例MRI检查(88例来自患者,98例来自公开数据库) |
397 | 2025-06-21 |
Radiomics for lung cancer diagnosis, management, and future prospects
2025-Jul, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.106926
PMID:40344812
|
综述 | 本文综述了放射组学在肺癌诊断和管理中的作用,探讨了从手工放射组学到深度学习技术的多种方法及其在肺癌护理各阶段的关键应用 | 强调了放射组学在提高诊断准确性、预测治疗反应和个性化患者护理方面的潜力,并探讨了未来整合大型语言模型、可解释AI和超分辨率成像技术的发展方向 | NA | 探讨放射组学在肺癌诊断和管理中的应用及其未来发展前景 | 肺癌 | 数字病理学 | 肺癌 | 放射组学、深度学习 | AI模型 | 医学影像 | NA |
398 | 2025-06-21 |
Breast tumour classification in DCE-MRI via cross-attention and discriminant correlation analysis enhanced feature fusion
2025-Jul, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.106941
PMID:40403340
|
研究论文 | 本文提出了一种基于动态对比增强磁共振成像(DCE-MRI)的乳腺肿瘤分类方法,通过融合深度特征和交叉注意力编码的放射组学特征,利用判别相关分析(DCA)提高分类准确性 | 提出了一种新颖的特征融合方法eFF-DCA,结合了深度特征和交叉注意力编码的放射组学特征,利用DCA优化特征相关性,提高了乳腺肿瘤分类的准确性 | 非端到端的设计限制了多模态特征的融合效果 | 开发并验证一种基于DCE-MRI的乳腺肿瘤分类方法,以提高良性和恶性肿瘤的鉴别诊断准确性 | 乳腺肿瘤 | 数字病理学 | 乳腺癌 | DCE-MRI | eFF-DCA | 医学影像 | 261名个体,包括137个良性肿瘤和163个恶性肿瘤 |
399 | 2025-06-21 |
Multicycle Dosimetric Behavior and Dose-Effect Relationships in [177Lu]Lu-DOTATATE Peptide Receptor Radionuclide Therapy
2025-Jun-02, Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IF:9.1Q1
DOI:10.2967/jnumed.124.269389
PMID:40274371
|
研究论文 | 研究[177Lu]Lu-DOTATATE肽受体放射性核素治疗(PRRT)在转移性神经内分泌肿瘤(NETs)中的药代动力学、剂量学模式及吸收剂量(AD)-效应关系,以制定未来个性化剂量引导治疗的策略 | 揭示了不同治疗周期和不同NET亚组的剂量学行为,并建立了eGFR与AD之间的关系模型,可用于早期预测肾功能 | 样本量较小(30例患者),且未观察到高于2级的肾毒性 | 优化PRRT个性化治疗方案 | 转移性神经内分泌肿瘤患者 | 放射治疗学 | 神经内分泌肿瘤 | SPECT/CT成像、蒙特卡洛剂量率图生成 | 深度学习算法(用于肾脏分割) | 医学影像(CT/SPECT/MRI) | 30例患者(22例完成所有周期SPECT/CT成像) |
400 | 2025-06-21 |
Simple controls exceed best deep learning algorithms and reveal foundation model effectiveness for predicting genetic perturbations
2025-Jun-02, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf317
PMID:40407144
|
research paper | 本文介绍了一种简单的基线方法,在预测基因扰动后的转录组反应方面优于现有的深度学习方法,并阐明了基础模型在此任务中的实用性 | 提出了一种简单但性能优于现有深度学习方法的新基线方法,并提供了修正后的流行数据集版本 | 未提及具体样本量或数据规模,可能影响结果的可推广性 | 评估和改进基因扰动后转录组反应的预测方法 | 基因扰动后的转录组反应预测 | machine learning | NA | transformer-based foundation model | transformer | transcriptomic data | NA |