本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4021 | 2025-11-12 |
Data Harmonization with StyleTransfer-GANs: Enhancing Non-Invasive IDH Classification in Brain Tumors
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3049148
PMID:41200077
|
研究论文 | 开发基于风格迁移生成对抗网络的医学影像数据协调方法,提升脑胶质瘤IDH突变分类的准确性和泛化能力 | 首次将StyleTransfer-GAN应用于多中心MRI数据的协调,在保持关键影像特征的同时消除机构间成像协议差异 | 风格迁移参考选择对分类性能敏感,未详细说明具体数据集规模和多样性 | 解决多中心医学影像数据异质性问题,提高深度学习模型在脑肿瘤IDH分类中的泛化能力 | 脑胶质瘤患者的多中心MRI影像数据 | 医学影像分析 | 脑胶质瘤 | MRI,深度学习 | GAN,深度神经网络 | 医学影像 | NA | NA | StyleTransfer-GAN | 准确率,灵敏度,特异性 | NA |
| 4022 | 2025-11-12 |
AllerTrans: a deep learning method for predicting the allergenicity of protein sequences
2025, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpaf040
PMID:40656558
|
研究论文 | 开发了一种基于深度学习的蛋白质序列过敏性预测方法AllerTrans | 结合两种蛋白质语言模型提取不同特征向量,并通过集成建模技术提升预测性能 | NA | 预测蛋白质序列的过敏性 | 蛋白质序列 | 生物信息学 | 过敏性疾病 | 蛋白质语言模型 | DNN | 蛋白质序列 | NA | NA | 深度神经网络 | 灵敏度,特异性,准确率,AUC | NA |
| 4023 | 2025-11-12 |
EnergyShare AI: Transforming P2P energy trading through advanced deep learning
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e36948
PMID:39296059
|
研究论文 | 介绍EnergyShare AI系统,通过深度强化学习优化点对点能源交易 | 将深度强化学习应用于点对点能源交易系统,相比传统线性整数规划模型在优化双向能源传输方面具有优势 | NA | 提高能源管理效率并降低能源交易成本 | 消费者和产消者通过太阳能阵列、储能系统和电动汽车进行的能源交易 | 机器学习 | NA | 深度强化学习 | DRL | 能源交易数据 | NA | NA | NA | 成本节约、能源传输量 | NA |
| 4024 | 2025-11-12 |
Detection of Peri-Pancreatic Edema using Deep Learning and Radiomics Techniques
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC53108.2024.10782032
PMID:40039000
|
研究论文 | 本研究开发了一种结合深度学习和影像组学技术自动检测胰周水肿的方法 | 首次提出自动检测胰周水肿的研究,创建了首个该问题的基准测试,结合了现代深度学习架构和影像组学技术 | 样本量相对有限(255例患者),需要进一步验证 | 开发自动检测胰周水肿的方法以辅助胰腺炎诊断和管理 | 胰腺疾病患者的CT影像数据 | 医学影像分析 | 胰腺炎 | CT影像分析 | Transformer, XGBoost | CT图像 | 255例胰腺疾病患者 | PyTorch | LinTransUNet, Swin-Tiny | Dice系数, mIoU, 召回率, 精确率, 准确率 | NA |
| 4025 | 2025-11-12 |
Image fusion using Y-net-based extractor and global-local discriminator
2024-May-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e30798
PMID:38784534
|
研究论文 | 提出一种基于Y-Net和全局-局部判别器的GAN模型用于红外与可见光图像融合 | 采用Y-Net作为生成器主干架构,引入残差密集块和跨模态上下文注意力捷径,结合全局-局部判别器实现无融合规则的端到端图像融合 | NA | 解决多模态图像融合中特征提取和信息保真度的挑战 | 红外图像与可见光图像 | 计算机视觉 | NA | 图像融合技术 | GAN | 图像 | NA | NA | Y-Net, RDblock, CMSCA, PatchGAN | 结构相似性指数, 强度相似性, 梯度相似性 | NA |
| 4026 | 2025-11-12 |
Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning
2023-Dec-10, The Science of the total environment
DOI:10.1016/j.scitotenv.2023.166168
PMID:37586538
|
研究论文 | 本研究使用深度学习从街景图像评估空气污染和噪声的时空分布 | 首次系统评估基于图像的污染模型在时空维度上的泛化能力,特别是在基础设施有限的中低收入国家 | 模型在未见过的地点表现下降,需要与传统传感器网络集成以提高鲁棒性 | 开发能够从街景图像推断细颗粒物和噪声水平的时空可泛化模型 | 加纳阿克拉市的空气污染(PM)和噪声水平 | 计算机视觉 | NA | 街景图像分析 | CNN | 图像 | 超过160万张图像,在145个代表性地点收集,持续15个月 | NA | 卷积神经网络 | 准确率 | NA |
| 4027 | 2025-11-12 |
Phenotyping urban built and natural environments with high-resolution satellite images and unsupervised deep learning
2023-Oct-01, The Science of the total environment
DOI:10.1016/j.scitotenv.2023.164794
PMID:37315611
|
研究论文 | 提出一种无监督深度聚类方法,利用高分辨率卫星图像对城市建成和自然环境进行表型分类 | 开发新型无监督深度聚类方法,仅通过卫星图像即可捕捉城市环境的多维特征,无需传统环境与人口数据 | 基于组合特征的聚类结果对空间尺度和聚类数量选择敏感 | 实现城市建成和自然环境的实时监测与可持续发展追踪 | 加纳阿克拉市的高分辨率卫星图像(0.3米/像素) | 计算机视觉 | NA | 卫星遥感成像 | 无监督深度学习 | 卫星图像 | 加纳阿克拉市全域高分辨率卫星图像 | NA | 深度聚类 | 聚类稳健性, 可解释性 | NA |
| 4028 | 2025-11-12 |
Do poverty and wealth look the same the world over? A comparative study of 12 cities from five high-income countries using street images
2023, EPJ data science
IF:3.0Q1
DOI:10.1140/epjds/s13688-023-00394-6
PMID:37293269
|
研究论文 | 利用街景图像和深度学习比较五个高收入国家12个城市中贫困与富裕社区视觉特征的相似性 | 首次通过跨城市跨国比较分析揭示贫困社区视觉特征比富裕社区更具城市独特性 | 研究仅涵盖高收入国家城市,未包括中低收入国家城市 | 探究不同城市和国家间贫困与富裕社区视觉环境的相似程度 | 12个高收入城市的社区街景图像 | 计算机视觉 | NA | 街景图像分析 | 深度学习 | 图像 | 720万张街景图像,覆盖12个城市8500万人口 | NA | NA | NA | NA |
| 4029 | 2025-11-12 |
Convolutional Neural Network Models Combined with Kansei Engineering in Product Design
2023, Computational intelligence and neuroscience
DOI:10.1155/2023/2572071
PMID:36864929
|
研究论文 | 本研究结合卷积神经网络与感性工学,提出了一种能够满足用户感知需求的产品设计方法 | 首次将CNN模型与感性工学理论相结合,建立了产品设计的感知评价系统,提升了产品设计感知信息的逻辑深度 | 仅以电子秤作为研究案例,缺乏对其他产品类型的验证 | 开发能够满足用户感知需求的产品设计方法,提升产品市场竞争力 | 产品设计造型,特别是电子秤的外观设计 | 计算机视觉 | NA | 图像识别 | CNN | 图像 | NA | NA | 卷积神经网络 | NA | NA |
| 4030 | 2025-11-12 |
Characterisation of urban environment and activity across space and time using street images and deep learning in Accra
2022-11-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-24474-1
PMID:36443345
|
研究论文 | 利用街景图像和深度学习技术分析加纳阿克拉城市环境特征与人类活动的时空模式 | 首次在非洲城市阿克拉构建大规模时间序列街景图像数据集,并开发针对当地环境特征的物体检测模型 | 仅覆盖145个采样点,手动标注样本数量有限(1250张图像),可能无法完全代表整个城市区域的多样性 | 通过智能感知和分析方法研究城市环境特征对健康、宜居性、安全性和可持续性的影响 | 加纳阿克拉大都会区的城市环境和人类活动 | 计算机视觉 | NA | 街景图像采集、迁移学习、数据增强 | CNN | 图像 | 210万张延时摄影图像(日夜),其中1250张手动标注 | NA | 卷积神经网络 | NA | NA |
| 4031 | 2025-11-12 |
A Lightweight Hybrid Dilated Ghost Model-Based Approach for the Prognosis of Breast Cancer
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/9325452
PMID:39262920
|
研究论文 | 提出一种基于轻量级混合扩张Ghost模型的乳腺癌预后方法,实现恶性细胞检测和家族分类 | 采用改进的随机通道注意力机制和DenseNet模型,结合轻量级深度学习架构,在保持高精度的同时满足严格的执行、训练和能耗限制 | NA | 开发自动化的乳腺癌恶性细胞检测和家族分类系统 | 数字乳腺X线摄影图像中的肿瘤 | 计算机视觉 | 乳腺癌 | 数字乳腺X线摄影 | CNN, DenseNet | 图像 | NA | NA | Ghost模型, DenseNet | 准确率 | NA |
| 4032 | 2025-11-12 |
Pneumonia Detection in Chest X-Ray Images Using Enhanced Restricted Boltzmann Machine
2022, Journal of healthcare engineering
DOI:10.1155/2022/1678000
PMID:35991297
|
研究论文 | 提出一种增强型受限玻尔兹曼机模型用于胸部X射线图像中的肺炎检测 | 通过计算特定特征向量均值与所有输入特征均值的差异来改进权重初始化方法,解决了标准RBM随机权重初始化导致的特征学习不充分问题 | NA | 开发更准确的肺炎自动检测方法 | 胸部X射线图像 | 计算机视觉 | 肺炎 | NA | 受限玻尔兹曼机 | 图像 | 三个不同的肺炎数据集 | NA | 增强型受限玻尔兹曼机 | 准确率, 灵敏度, 特异性, F1分数, ROC曲线 | NA |
| 4033 | 2025-11-12 |
A Method for Extracting Building Information from Remote Sensing Images Based on Deep Learning
2022, Computational intelligence and neuroscience
DOI:10.1155/2022/9968665
PMID:36275958
|
研究论文 | 提出一种基于深度学习的遥感图像建筑物信息提取方法,结合DeepLabv3+与Mixconv2d提升轮廓捕捉能力 | 将DeepLabv3+与Mixconv2d结合,使用不同尺寸卷积核进行特征识别,并采用基于Rdrop Loss的正则化方法 | 基于自建数据集验证,未与其他公开数据集进行对比验证 | 提高遥感图像中建筑物信息提取的精度和效率 | 遥感图像中的建筑物 | 计算机视觉 | NA | 遥感成像 | 深度学习,语义分割 | 遥感图像 | 自建数据集(具体数量未说明) | NA | DeepLabv3+,Mixconv2d | 准确率,效率,分割性能 | NA |
| 4034 | 2025-11-12 |
Food Image Recognition and Food Safety Detection Method Based on Deep Learning
2021, Computational intelligence and neuroscience
DOI:10.1155/2021/1268453
PMID:34956342
|
研究论文 | 提出基于深度学习的食品图像识别和食品安全检测方法 | 结合Tiny-YOLO和孪生网络提出YOLO-SIMM两阶段学习模式,设计YOLO-SiamV1和YOLO-SiamV2两个版本 | 识别精度一般 | 解决食品识别领域复杂度高、识别精度和速度不足的问题 | 食品图像和食品中异物 | 计算机视觉 | NA | 阈值分割技术 | CNN | 图像 | NA | NA | Tiny-YOLO, 孪生网络 | 识别精度 | NA |
| 4035 | 2025-11-11 |
Deep learning model for osteoporosis screening on chest CT with low tube voltage
2025-Nov-10, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09540-2
PMID:41207963
|
研究论文 | 开发基于低管电压胸部CT的深度学习模型用于骨质疏松筛查 | 首次使用100kV低管电压胸部CT图像结合深度学习进行骨质疏松筛查 | 回顾性研究,样本量有限(649例) | 开发骨质疏松筛查的深度学习模型 | 接受低管电压胸部CT和腰椎QCT检查的患者 | 医学影像分析 | 骨质疏松 | 定量计算机断层扫描(QCT) | 深度学习 | CT图像 | 649例患者(训练集518例,测试集131例) | NA | Bone-PSPNet, Ost-ClassNet | 敏感度, AUC | NA |
| 4036 | 2025-11-11 |
Extending convolutional neural networks to detect differences in symmetry in videorasterstereographic back scans with the aim to improve screening for adolescent idiopathic scoliosis
2025-Nov-10, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09520-6
PMID:41207964
|
研究论文 | 本研究提出两种对称性敏感的卷积神经网络,通过分析视频光栅立体成像背部扫描图像中的对称性差异来改善青少年特发性脊柱侧凸的筛查 | 将卷积神经网络扩展到对称性分析领域,特别开发了基于DeepSymNet的双通道CNN,能够分别分析躯干左右两侧图像并检测不对称性 | 数据集多样性既是优势也是挑战,包含了多种姿势状况,可能混淆AIS特征识别;需要纳入更多轻度病例来提升性能 | 改进青少年特发性脊柱侧凸的筛查方法 | 青少年背部视频光栅立体成像扫描图像 | 计算机视觉 | 青少年特发性脊柱侧凸 | 视频光栅立体成像 | CNN | 图像 | 1444个视频光栅立体成像测量数据(355例AIS患者,306例其他脊柱畸形,783例健康姿势) | NA | VGG16, DeepSymNet | 准确度, 特异性, 敏感性, 阳性预测值 | NA |
| 4037 | 2025-11-11 |
Letter to the editor "Multichannel deep learning for MPR prediction in lung cancer: navigating translational pitfalls between algorithmic excellence and clinical deployment"
2025-Nov-10, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000003962
PMID:41208798
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4038 | 2025-11-11 |
Enhancing Dental Caries Classification with Adversarial Training on Bitewing Radiographs
2025-Nov-10, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01737-7
PMID:41212346
|
研究论文 | 本研究通过将投影梯度下降对抗训练应用于ResNet模型,提升咬翼片X光影像中龋齿分类的准确性和鲁棒性 | 首次将投影梯度下降对抗训练技术应用于龋齿分类任务,通过引入轻微扰动增强数据集,显著提升模型性能 | 仅使用单一类型影像数据(咬翼片X光),未考虑其他影像模态;模型性能仍有提升空间 | 提高基于深度学习的龋齿分类模型的准确性和鲁棒性 | 咬翼片X光影像中的龋齿病变 | 计算机视觉 | 龋齿 | X光影像分析 | CNN | 医学影像 | NA | NA | ResNet-50 | 准确率, 敏感度, 特异性 | NA |
| 4039 | 2025-11-11 |
Longitudinal deep learning models for tracking disease progression in ovarian cancer using PET/CT imaging and clinical reports
2025-Nov-10, Physical and engineering sciences in medicine
IF:2.4Q2
DOI:10.1007/s13246-025-01669-0
PMID:41212383
|
研究论文 | 开发了集成纵向PET/CT影像和临床数据的深度学习框架OvarXNet,用于早期预测卵巢癌复发 | 首次结合纵向PET/CT影像和临床数据,采用3D CNN和双向门控循环单元进行时序分析,显著提升复发预测性能 | 回顾性研究,样本量较小(58例患者),需进一步前瞻性验证 | 早期预测高级别浆液性卵巢癌的疾病进展和复发 | 58例晚期高级别浆液性卵巢癌患者 | 数字病理 | 卵巢癌 | PET/CT成像,临床数据分析 | CNN, BiGRU | 医学影像,临床文本 | 58例患者,1914个增强后的图像集 | NA | 3D CNN, 双向门控循环单元 | AUC, PR-AUC, 校准图 | NA |
| 4040 | 2025-11-11 |
OralSegNet: An Approach to Early Detection of Oral Disease Using Transfer Learning
2025-Nov-09, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.70135
PMID:41207876
|
研究论文 | 提出基于深度学习的口腔疾病早期检测分割系统OralSegNet,使用YOLOv11架构变体从口腔内摄影图像中自动检测和定位口腔疾病 | 首次将YOLOv11架构的三个变体应用于口腔疾病分割任务,采用渐进式数据集增强策略解决类别不平衡问题,并开发了完全客户端响应的Web应用 | 数据集规模相对较小(582张初始图像),模型性能仍有提升空间(mAP@50约0.5),使用免费计算资源可能限制模型复杂度 | 开发自动化口腔疾病检测和定位系统,实现口腔疾病的早期发现 | 口腔内摄影图像中的口腔疾病病变区域 | 计算机视觉 | 口腔疾病 | 深度学习分割 | YOLO | 图像 | 初始582张像素级标注图像,通过数据增强扩展到v2和v3版本 | PyTorch, ONNX Runtime Web | YOLOv11n-seg, YOLOv11s-seg, YOLOv11m-seg | box mAP@50, mask mAP@50 | Google Colab免费版(Intel Xeon CPU, 13GB RAM, T4 GPU 15GB, 120GB存储) |