深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 39887 篇文献,本页显示第 4141 - 4160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
4141 2025-12-27
Generational stability of environmentally induced epigenetic transgenerational inheritance of adult-onset disease over ten mammalian generations
2025, Environmental epigenetics IF:4.8Q1
研究论文 本研究通过连续繁殖10代大鼠,评估了环境暴露诱导的表观遗传跨代遗传对成年期疾病的影响 首次在哺乳动物中证明环境诱导的表观遗传跨代遗传可稳定维持长达10代,远超以往仅研究3-4代的范围 研究仅关注大鼠模型,未涉及其他哺乳动物;病理评估主要基于特定组织,可能未全面覆盖所有器官 探究环境暴露导致的表观遗传跨代遗传在哺乳动物中是否能在多代间稳定维持 远交大鼠群体,包括雄性和雌性谱系 表观遗传学 成年期疾病 DNA甲基化分析,深度学习组织学协议 深度学习 组织病理图像,DNA甲基化数据 连续10代大鼠群体 NA NA NA NA
4142 2025-12-27
Design and development of an mHealth application for pressure ulcer care and caregiver support
2025, Frontiers in digital health IF:3.2Q2
研究论文 本研究旨在设计和开发一款名为IPI的移动健康应用程序,该应用集成了基于人工智能的压力性损伤分期、针对护理人员的教育、个性化营养支持和视觉伤口监测功能,以辅助护理人员和医疗专业人员提供及时有效的护理 开发了一个集成了AI压力性损伤分期、护理人员教育、个性化营养支持和伤口视觉监测的综合性移动健康应用程序,并采用了针对类别不平衡和类间细微差异的类别自适应增强流程以及增强的Vision Transformer架构 未来需要通过实验研究验证该应用程序的临床效用、对患者结局的影响以及改善家庭压力性损伤管理质量的潜力 设计和开发一个支持家庭压力性损伤护理和护理人员支持的移动健康应用程序 压力性损伤图像数据集(包括健康组织和1-4期溃疡)以及相关的护理人员和医疗专业人员 计算机视觉 压力性损伤 深度学习 Vision Transformer 图像 临床验证的压力性损伤图像数据集,涵盖六个类别(健康组织和1-4期溃疡) NA 增强的Vision Transformer架构(具有分层特征表示和专门的自注意力机制) 准确率, 宏F1分数 NA
4143 2025-12-27
Real-time segmentation and phenotypic analysis of rice seeds using YOLOv11-LA and RiceLCNN
2025, Frontiers in plant science IF:4.1Q1
研究论文 提出了一种结合YOLOv11-LA目标检测、RiceLCNN分类、DeepSORT跟踪和亚像素边缘检测的集成智能分析模型,用于水稻种子的实时分割、分类和表型分析 在YOLOv11架构基础上,通过引入可分离卷积、CBAM注意力机制和模块剪枝策略,开发了轻量化的YOLOv11-LA模型,参数减少63.2%,计算复杂度降低51.6%,同时检测精度提升 未明确说明模型在极端光照条件、不同水稻品种或大规模田间部署时的泛化能力 实现水稻种子的实时、准确检测、分类和表型测量,以提升农业生产效率和粮食质量 水稻种子 计算机视觉 NA 深度学习,亚像素边缘检测,动态尺度校准 CNN,目标检测模型,分类模型,多目标跟踪算法 图像 未明确说明具体样本数量,但使用了私有数据集和公共基准数据集 未明确说明,可能为PyTorch(基于YOLO系列常见实现) YOLOv11-LA(基于YOLOv11改进),RiceLCNN(自定义轻量CNN),DeepSORT mAP@0.5:0.95,分类准确率,测量误差(毫米) 未明确说明具体硬件资源
4144 2025-12-27
GAME-Net: an ensemble deep learning framework integrating Generative Autoencoders and attention mechanisms for automated brain tumor segmentation in MRI
2025, Frontiers in computational neuroscience IF:2.1Q3
研究论文 本文提出了一种集成深度学习框架GAME-Net,结合生成式自编码器和注意力机制,用于自动化脑肿瘤MRI分割 通过集成生成式自编码器、注意力机制和卷积神经网络,创新性地结合了无监督表示学习和注意力驱动的特征细化,提升了肿瘤分割的准确性和鲁棒性 需要在外部数据集上进行更广泛的验证以进一步证实其泛化能力 提升脑肿瘤在MRI图像中的自动分割性能,以改善治疗规划和临床结果 脑肿瘤 计算机视觉 脑肿瘤 MRI CNN, 自编码器, Transformer 图像 5880张MRI图像 NA U-Net, 注意力增强U-Net, 生成式自编码器 Dice系数, Jaccard指数, 准确率, 灵敏度, 特异性, AUC-ROC NA
4145 2025-12-27
Model Ensemble for Brain Tumor Segmentation in Magnetic Resonance Imaging
2024, Brain tumor segmentation, and cross-modality domain adaptation for medical image segmentation : MICCAI challenges, BraTS 2023 and CrossMoDA 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12 and 8, 2024 : proc...
研究论文 本文提出了一种基于深度学习的集成策略,用于在磁共振成像中分割脑肿瘤,并在BraTS挑战赛的儿科脑肿瘤、颅内脑膜瘤和脑转移瘤任务中进行了评估 采用区域级集成方法结合nnU-Net和Swin UNETR模型,并实施了基于交叉验证阈值搜索的针对性后处理策略以优化肿瘤亚区域分割结果 NA 开发并评估一种用于多参数磁共振成像中脑肿瘤分割的深度学习集成方法,以支持临床试验和个性化患者护理 儿科脑肿瘤、颅内脑膜瘤和脑转移瘤病例 数字病理学 脑肿瘤 磁共振成像 CNN, Transformer 图像 4500例脑肿瘤病例(来自BraTS挑战赛数据集) PyTorch nnU-Net, Swin UNETR Dice系数 NA
4146 2025-12-27
Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers
2019-01-15, Scientific reports IF:3.8Q1
研究论文 本研究首次利用血液生化与细胞计数数据,结合人工智能技术预测吸烟状态并量化吸烟导致的生物衰老加速 首次将深度学习技术应用于常规血液检测数据,实现吸烟状态的客观预测及吸烟所致衰老加速的量化评估 未明确说明样本的具体人口学特征分布,且模型在跨人群的泛化能力有待验证 开发基于血液检测的吸烟状态评估方法并量化吸烟对生物衰老的影响 吸烟者与非吸烟者的血液生化及细胞计数数据 机器学习 心血管疾病 血液生化分析、细胞计数 深度学习 结构化数据(血液检测指标) NA NA NA NA NA
4147 2025-12-26
Association of a Lifestyle Risk Index With Visceral and Subcutaneous Adipose Tissue in the German National Cohort (NAKO)
2026-Jan, Obesity (Silver Spring, Md.)
研究论文 本研究探讨了生活方式风险指数与内脏和皮下脂肪组织的关系,基于德国国家队列的横断面数据 结合多种生活方式因素构建风险指数,并利用深度学习技术从全身MRI中自动分割内脏脂肪组织,分析其与生活方式的关系 研究为横断面设计,无法确定因果关系;样本可能受自我报告偏倚影响;BMI可能混淆生活方式与内脏脂肪的关联 评估生活方式风险指数与肥胖指标(特别是内脏脂肪组织)的关联 德国国家队列中30,920名符合条件的参与者,年龄48.2±12.2岁 数字病理学 心血管疾病 磁共振成像(MRI),深度学习图像分割 深度学习模型 图像(MRI扫描) 30,920名参与者(来自超过205,000名合格参与者),其中18,508名有完整数据 NA NA 调整后的几何均值,95%置信区间 NA
4148 2025-12-26
Effects of disease duration and antipsychotics on brain age in schizophrenia
2026-Jan, Schizophrenia research IF:3.6Q1
研究论文 本研究探讨了精神分裂症患者大脑加速衰老的现象,并评估了抗精神病药物对此的影响 使用两种不同的机器学习模型(包括一种基于Transformer的模型)来增强大脑年龄预测的鲁棒性,并首次在双相情感障碍患者中比较了接受与未接受抗精神病药物治疗对大脑年龄差距的影响 研究为横断面设计,无法确定大脑衰老的时间动态,需要纵向研究来澄清 调查精神分裂症中大脑加速衰老的进展性以及抗精神病药物的潜在作用 首次发作精神病患者、健康对照者以及接受与未接受抗精神病药物治疗的双相情感障碍患者 机器学习 精神分裂症 神经影像学 Transformer, 深度学习模型 神经影像数据 NA NA Transformer, 深度学习模型 NA NA
4149 2025-12-26
Deep learning for optical misalignment diagnostics in multi-lens imaging systems
2026-Jan-01, Optics letters IF:3.1Q2
研究论文 本文提出了两种基于深度学习的逆向设计方法,用于仅通过光学测量诊断多镜头成像系统中的光学错位问题 开发了两种互补的深度学习模型,利用光线追踪点图或灰度合成相机图像,实现多镜头系统错位的自动化诊断,无需传统专用设备 NA 开发自动化、可扩展的光学错位诊断方法,以改进多镜头成像系统的制造和质量控制流程 多镜头成像系统,包括6镜头摄影定焦镜头以及两镜头和六镜头系统 计算机视觉 NA 光线追踪,物理模拟管道 深度学习模型 光学测量数据,包括光线追踪点图和灰度合成相机图像 NA NA NA 平均绝对误差(对于横向平移为0.031 mm,对于倾斜为0.011) NA
4150 2025-12-26
Deep Learning-aided 1H-MR Spectroscopy for Differentiating between Patients with and without Hepatocellular Carcinoma
2025-Dec-25, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine IF:2.5Q2
研究论文 本研究探索了结合深度学习的1H-MR光谱技术在区分乙型肝炎病毒相关肝硬化患者是否伴有肝细胞癌方面的潜力 首次将深度学习与1H-MR光谱结合,通过光谱模拟进行数据增强,用于肝细胞癌的鉴别诊断 样本量较小(共37例患者),且研究基于模拟数据集,需要进一步临床验证 开发一种基于深度学习的1H-MR光谱方法,以区分乙型肝炎病毒相关肝硬化患者是否伴有肝细胞癌 乙型肝炎病毒相关肝硬化患者,包括无肝细胞癌组(20例)和伴有肝细胞癌组(17例) 医学影像分析 肝细胞癌 质子MR光谱(1H-MRS) CNN 光谱数据 37例患者(20例无HCC,17例有HCC),其中17例用于测试 NA 卷积神经网络(包括定量CNN和分类CNN) 灵敏度, 特异性, 准确率 NA
4151 2025-12-26
Recent Advances in Musculoskeletal Radiology: Bridging Innovation and Clinical Application
2025-Dec-25, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine IF:2.5Q2
综述 本文综述了肌肉骨骼放射学领域的最新进展,重点介绍了MRI、CT和人工智能等创新技术在提高诊断准确性方面的应用 总结了当前肌肉骨骼成像的七个关键领域,包括CT样对比MRI、定量MRI、AI在图像重建和诊断支持中的应用、MR波谱、全身MRI、PET以及先进的CT技术,并强调了这些技术如何共同推动该领域的范式转变 NA 总结和整合肌肉骨骼放射学领域的最新技术进展,并探讨其向临床应用的转化 肌肉骨骼系统的成像技术与临床应用 数字病理学 肌肉骨骼疾病 MRI, CT, 人工智能, MR波谱, PET CNN, 自然语言处理 图像, 文本 NA NA NA NA NA
4152 2025-12-26
Fully automated quantification of net water uptake in acute ischemic stroke using only non-contrast CT imaging
2025-Dec-25, European radiology IF:4.7Q1
研究论文 本研究提出了一种仅使用非增强CT图像的全自动净水摄取量化方法,用于评估急性缺血性卒中早期病变进展 首次实现了基于专家启发式规则和体素级计算的完全自动化净水摄取量化,无需深度学习组件,直接从常规NCCT扫描中估计病变进展 分割准确性中等(Dice系数约0.47-0.48),且为回顾性研究,需要进一步前瞻性验证 开发一种自动化、可重复的方法来量化急性缺血性卒中早期病变进展,以评估溶栓治疗效果 急性缺血性卒中患者的非增强CT图像 医学影像分析 缺血性卒中 非增强CT成像 NA 医学影像(CT图像) 内部数据集185例患者(排除后155例),外部测试集51例患者(排除后46例) NA NA 病变检测率, 平均绝对NWU误差, Dice相似系数, 平均平均精度 NA
4153 2025-12-26
Critical evaluation of the theory and practice of feed-forward neural networks for genomic prediction
2025-Dec-24, G3 (Bethesda, Md.)
研究论文 本文批判性地评估了前馈神经网络在基因组预测中的理论和实践,通过理论分析和实证研究比较了深度学习与线性模型的性能 提出了预测问题的分类法以避免模型比较中的混淆,并系统评估了深度学习在基因组预测中的三个声称优势 仅探索了深度学习模型空间的一小部分,可能未考虑其他潜在贡献方面 评估深度学习在基因组预测中的有效性,并与传统线性模型进行比较 玉米多环境试验数据集,包括基因组、土壤、天气和管理输入与谷物产量的关系 机器学习 NA 基因组预测,深度学习,RKHS回归 前馈神经网络,RKHS模型 基因组数据,土壤数据,天气数据,管理数据 NA NA NA 预测准确性 NA
4154 2025-12-26
Deep Learning Model for Classification of Premature Ventricular Contractions - Could Artificial Intelligence Models Become the New Criteria?
2025-Dec-24, Circulation journal : official journal of the Japanese Circulation Society IF:3.1Q2
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
4155 2025-12-26
Conjugate gradient and deep learning reconstructions: reduced time without affecting image quality and nodule detection
2025-Dec-24, European radiology IF:4.7Q1
研究论文 本研究评估了共轭梯度重建和深度学习重建在超短回波时间肺部MRI中减少扫描时间的同时保持图像质量和结节检测能力的效用 结合共轭梯度重建和深度学习重建技术,在超短回波时间肺部MRI中实现扫描时间减少而不影响图像质量和结节检测能力 研究样本量相对较小(35名患者),且仅针对肺部结节进行评估,未涉及其他肺部病变 评估共轭梯度重建和深度学习重建在超短回波时间肺部MRI中减少扫描时间的潜力 NEMA体模和35名肺部结节患者 医学影像分析 肺癌 超短回波时间MRI 深度学习重建 MRI图像 35名肺部结节患者和NEMA体模 NA NA 信噪比, 图像质量评分, 结节检测能力, ROC曲线下面积 NA
4156 2025-12-26
Charting the virosphere: computational synergies of AI and bioinformatics in viral discovery and evolution
2025-Dec-23, Journal of virology IF:4.0Q2
综述 本文回顾了计算病毒学从传统方法到AI及混合框架的演变,探讨了AI在病毒发现和进化研究中的整合应用 提出了一个结合AI模式识别与经典生物信息学的集成工作流程,以同时提升病毒发现的可扩展性和结果可解释性 AI驱动的方法面临计算负担重、数据集偏差、可解释性有限以及假阳性发现率较高等挑战 加速病毒发现、增强对病毒进化的理解,并加强全球对新发传染病的防范准备 病毒基因组、病毒蛋白质及其与宿主的相互作用 生物信息学 传染病 宏基因组测序 CNN, RNN, Transformer, GNN 序列数据,结构数据 NA NA AlphaFold, ESMFold, Foldseek 灵敏度,可扩展性,假发现率 NA
4157 2025-12-26
U-Net-based deep learning architecture for automated CBCT segmentation of the mandibular canal in dental implant treatment planning: A systematic review and meta-analysis
2025-Dec-23, The Journal of prosthetic dentistry IF:4.3Q1
系统综述与荟萃分析 本文通过系统综述和荟萃分析,评估了基于U-Net的深度学习架构在CBCT影像中自动分割下颌管用于牙科种植治疗规划的准确性和临床相关性 首次对基于U-Net的深度学习模型在CBCT下颌管自动分割中的应用进行系统综述和定量荟萃分析,综合评估其分割精度和临床潜力 纳入研究数量有限(8项),存在高度异质性,且外部验证和模型可解释性分析报告不足,可能影响结果的普遍适用性 评估深度学习(主要是U-Net架构)在CBCT影像中自动分割下颌管用于牙科种植规划的准确性和临床价值 锥形束计算机断层扫描(CBCT)影像中的下颌管结构 数字病理 NA 锥形束计算机断层扫描(CBCT) 深度学习 医学影像(CBCT扫描) NA NA U-Net, 注意力机制U-Net, 残差U-Net Dice相似系数(DSC), 95%豪斯多夫距离(HD), 交并比(IoU) NA
4158 2025-12-26
MRI-based habitat radiomics and deep learning for predicting vessels encapsulating tumor clusters and survival in hepatocellular carcinoma
2025-Dec-22, Insights into imaging IF:4.1Q1
研究论文 本研究开发并验证了一种基于MRI的深度学习放射组学列线图模型,用于术前预测肝细胞癌中的血管包绕肿瘤簇和无复发生存期 首次结合栖息地放射组学和深度学习特征构建了多模态预测模型,并利用SHAP方法增强了模型的可解释性 回顾性研究设计可能存在选择偏倚,且外部验证集规模相对有限 开发术前预测肝细胞癌血管包绕肿瘤簇状态和无复发生存期的预测模型 肝细胞癌患者 数字病理 肝细胞癌 Gd-EOB-DTPA增强MRI 深度学习,机器学习分类器 MRI图像 625例肝细胞癌患者(训练集296例,内部测试集126例,外部测试集203例) NA NA AUC,F1-score,C-index NA
4159 2025-12-26
Deep Learning Approaches for Classifying Children With and Without Autism Spectrum Disorder Using Inertial Measurement Unit Hand Tracking Data: Comparative Study
2025-Dec-22, JMIR medical informatics IF:3.1Q2
研究论文 本研究评估了多种深度学习模型,利用惯性测量单元手部追踪数据对自闭症谱系障碍儿童进行分类 结合卷积自编码器和长短期记忆层处理IMU手部追踪数据,在自闭症分类任务中实现了高准确率和F1分数,并验证了小规模模型在医疗数据分类中的有效性和泛化能力 样本量相对较小(41名学龄儿童),且仅基于单一任务(伸手清理任务)的IMU数据,可能限制了模型的广泛适用性 评估深度学习模型在利用惯性测量单元手部追踪数据对自闭症谱系障碍儿童进行分类中的效果 自闭症谱系障碍儿童和正常发育儿童的惯性测量单元手部追踪数据 机器学习 自闭症谱系障碍 惯性测量单元手部追踪 卷积自编码器, 长短期记忆 时间序列数据 41名学龄儿童(包括自闭症谱系障碍儿童和正常发育儿童) NA 卷积自编码器+长短期记忆 准确率, F1分数 NA
4160 2025-12-26
Quantitative multi-metabolite imaging of Parkinson's disease using AI boosted molecular MRI
2025-Dec-22, Npj imaging
研究论文 本研究结合快速分子MRI采集与深度学习重建,对急性MPTP小鼠模型中的多种代谢物进行定量成像,以探索帕金森病的生物标志物 首次将快速分子MRI采集范式与深度学习重建相结合,实现多代谢物(谷氨酸、可移动蛋白质、半固体及可移动大分子)的定量成像,并识别出半固体磁化转移、酰胺及脂肪族接力核奥弗豪斯效应质子体积分数作为潜在的帕金森病生物标志物 研究基于急性MPTP小鼠模型,结果可能无法完全反映人类帕金森病的异质性或早期阶段特征 开发一种基于人工智能增强的分子MRI技术,用于帕金森病的定量多代谢物成像,以改善诊断和生物标志物发现 急性MPTP诱导的帕金森病小鼠模型 数字病理学 帕金森病 分子MRI, 磁共振波谱 深度学习 MRI图像 NA NA NA NA NA
回到顶部