本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401 | 2025-04-25 |
CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00504
PMID:38739718
|
研究论文 | 本文介绍了一种基于双向循环神经网络(Bi-RNN)的生成模型CNSMolGen,用于中枢神经系统(CNS)药物的从头设计 | 开发了首个专门针对CNS药物设计的Bi-RNN生成模型,能够生成90%以上全新且可合成的CNS药物分子结构 | 未提及模型在更大规模或更复杂CNS靶点上的泛化能力验证 | 加速中枢神经系统药物的发现与优化 | 中枢神经系统药物分子 | 机器学习 | 神经退行性疾病/精神疾病 | 深度学习生成模型 | Bi-RNN | 分子结构数据 | 未明确说明样本量(使用SERT靶点药物作为微调数据集) |
402 | 2025-04-25 |
Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.3c02061
PMID:38739853
|
研究论文 | 提出了一种基于ESMFold预测结构和ESM-2氨基酸特征的图深度学习框架,用于预测抗菌肽 | 结合了最新的三级结构预测技术和进化信息编码方法,避免了多重序列对齐的内存和时间消耗 | 依赖于预测的肽结构,可能受到预测准确性的影响 | 开发一种无需对齐的模型,用于高效预测抗菌肽 | 抗菌肽(AMPs) | 机器学习 | 抗菌耐药性 | ESMFold结构预测,ESM-2进化模型,图注意力网络(GAT) | GAT | 氨基酸序列和预测的3D结构 | 67,058种肽 |
403 | 2025-04-25 |
Prediction of Transcription Factor Binding Sites on Cell-Free DNA Based on Deep Learning
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00047
PMID:38798191
|
研究论文 | 本研究提出了一种基于深度学习的非侵入性方法,用于预测细胞游离DNA上的转录因子结合位点 | 利用卷积神经网络和长短期记忆网络从已知的转录因子结合位点学习序列信息,实现了非侵入性预测 | 研究中未提及样本的具体数量或多样性,可能影响模型的泛化能力 | 探索基因调控机制,为非侵入性动态监测疾病提供技术指导 | 细胞游离DNA上的转录因子结合位点 | 机器学习 | 癌症 | 深度学习 | CNN, LSTM | DNA序列数据 | NA |
404 | 2025-04-25 |
Natural language processing models reveal neural dynamics of human conversation
2024-Apr-18, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.10.531095
PMID:36945468
|
研究论文 | 该研究利用预训练的深度学习自然语言处理模型和颅内神经元记录,揭示了人类自然对话中语言产生和理解的神经动态 | 结合深度学习模型和颅内神经元记录技术,首次在自然对话情境下揭示了语言产生和理解过程中神经活动的动态组织 | 研究依赖于颅内记录技术,样本量有限,且仅关注了前颞叶区域的神经活动 | 探索人类自然对话中语言产生和理解的神经机制 | 人类自然对话过程中的神经活动 | 自然语言处理 | NA | 深度学习自然语言处理模型, 颅内神经元记录 | 预训练深度学习模型 | 神经信号数据, 语言数据 | NA |
405 | 2025-04-25 |
Fine-Grained Forecasting of COVID-19 Trends at the County Level in the United States
2024-Mar-25, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.01.13.24301248
PMID:38293076
|
research paper | 本文提出了一种名为FIGI-Net的循环神经网络模型,用于预测美国县级COVID-19的感染趋势 | FIGI-Net利用堆叠的双向LSTM结构,能够提前两周准确预测县级COVID-19感染趋势,并能预测疾病趋势的突然变化 | NA | 提高COVID-19短期疾病活动预测的准确性和实时性 | 美国县级COVID-19感染趋势 | machine learning | COVID-19 | deep learning | LSTM | time-series data | 县级数据(具体数量未提及) |
406 | 2025-04-25 |
Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation
2024-01, Nature cell biology
IF:17.3Q1
DOI:10.1038/s41556-023-01316-4
PMID:38182825
|
研究论文 | 本研究结合单细胞多组学、空间组学、大规模并行报告基因检测和深度学习技术,解析了小鼠肝脏细胞类型中的增强子-基因调控网络 | 首次结合多种组学技术和深度学习模型DeepLiver,系统解析了肝脏分区中的增强子驱动基因调控网络 | 研究主要基于小鼠模型,人类肝脏中的适用性需要进一步验证 | 解析肝脏分区现象的基因调控机制 | 小鼠肝脏细胞(特别是肝细胞) | 生物信息学 | NA | 单细胞多组学、空间组学、大规模并行报告基因检测 | DeepLiver(分层深度学习模型) | 单细胞基因表达数据、染色质可及性数据 | NA |
407 | 2025-04-25 |
An enhanced GhostNet model for emotion recognition: leveraging efficient feature extraction and attention mechanisms
2024, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2024.1459446
PMID:40270901
|
研究论文 | 提出了一种结合GhostNet高效特征提取和Transformer全局上下文捕捉能力的增强型EGT模型,用于面部表情情感识别 | 整合GhostNet的高效特征提取、Transformer的全局上下文捕捉能力以及双重注意力机制,选择性增强关键特征 | 未提及模型在极端光照条件或部分遮挡情况下的表现 | 开发鲁棒的面部表情情感识别系统以提升人机交互体验 | 面部表情情感识别 | 计算机视觉 | NA | 深度学习 | EGT(Enhanced GhostNet with Transformer Encoder) | 图像(面部表情) | RAF-DB和AffectNet数据集(具体数量未说明) |
408 | 2025-04-25 |
Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing
2023-10, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.4772
PMID:37646172
|
研究论文 | 本文提出了一种结合小角中子散射和计算方法的集成方法,用于解析两个内在无序区域形成的复合物的结构集合 | 结合选择性氘标记的小角中子散射实验、微秒级全原子分子动力学模拟和基于自动编码器的深度学习算法,提出了一种新的集成方法来表征内在无序蛋白质的结构集合 | 实验时间尺度通常捕获的是多个构象的平均测量值,导致复杂的小角中子散射数据难以解析 | 研究内在无序蛋白质和蛋白质内在无序区域的结构集合,以理解其结构与功能关系 | 由两个内在无序区域形成的复合物 | 结构生物学 | NA | 小角中子散射(SANS)、分子动力学(MD)模拟、深度学习(DL) | 自动编码器 | 中子散射数据、分子动力学模拟数据 | NA |
409 | 2025-04-25 |
Computational Advancements in Cancer Combination Therapy Prediction
2023-09, JCO precision oncology
IF:5.3Q1
DOI:10.1200/PO.23.00261
PMID:37824797
|
review | 本文综述了计算预测癌症联合疗法的方法,并总结了最近的研究 | 强调了计算预测方法在癌症联合疗法中的创新应用,包括网络、回归机器学习、分类器机器学习模型和深度学习方法 | 不同方法各有优缺点,需要谨慎选择最适合的方法 | 提高癌症联合疗法的预测准确性 | 癌症联合疗法的计算预测方法 | machine learning | cancer | in silico drug repurposing | networks, regression-based machine learning, classifier machine learning models, deep learning | multiomics data | NA |
410 | 2025-04-25 |
Rapid and Portable Quantification of HIV RNA via a Smartphone-enabled Digital CRISPR Device and Deep Learning
2023-May-16, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.05.12.23289911
PMID:37292781
|
research paper | 该研究开发了一种基于智能手机的数字CRISPR设备,用于快速便携地定量检测HIV RNA | 结合了数字CRISPR检测、智能手机控制和深度学习算法,实现了HIV RNA的快速便携检测 | NA | 开发便携式HIV病毒载量监测工具 | HIV RNA | digital pathology | HIV/AIDS | RT-RPA-CRISPR检测 | Deep Learning | fluorescence images | 75 copies of HIV RNA |
411 | 2025-04-25 |
Spikebench: An open benchmark for spike train time-series classification
2023-01, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1010792
PMID:36626366
|
研究论文 | 提出了一个名为Spikebench的开放基准测试,用于评估尖峰序列时间序列分类的性能 | 基于开放获取的神经活动数据集,创建了一个包含多种学习任务的尖峰序列分类基准测试,并展示了基于手工特征工程的方法与深度学习模型性能相当 | 未提及具体的局限性 | 为神经解码领域提供多样化和具有挑战性的基准测试 | 神经尖峰序列 | 机器学习 | NA | 时间序列特征工程 | 决策树集成和深度神经网络 | 时间序列数据 | 基于多个开放获取的神经活动数据集 |
412 | 2025-04-25 |
Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model
2023, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0282158
PMID:36867635
|
research paper | 探讨利用人工智能模型进行建筑空间智能辅助设计的综合方法 | 通过深度学习和语义网络分析,建立建筑空间智能辅助模型,实现设计方案的自动生成 | 随着网络节点数量的增加,模型在测试数据集和训练数据集上的拟合度下降 | 提升建筑设计行业的智能化水平和设计效率 | 建筑空间设计 | machine learning | NA | Deep Learning | 语义网络和内部结构分析模型 | 3D模型数据 | UrbanScene3D数据集中的3D模型 |
413 | 2025-04-25 |
Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy
2022-08-01, Annals of surgery
IF:7.5Q1
DOI:10.1097/SLA.0000000000004594
PMID:33196488
|
research paper | 本研究开发并评估了人工智能模型在腹腔镜胆囊切除术中识别安全与危险解剖区域及解剖标志物的性能 | 利用深度学习技术实现术中实时解剖结构识别,为外科医生提供实时引导 | 研究样本来自多国多机构,可能存在手术操作差异,且模型性能指标仍有提升空间 | 开发AI模型用于腹腔镜手术中的解剖结构识别,降低手术风险 | 腹腔镜胆囊切除术视频中的解剖结构 | computer vision | 胆囊疾病 | 深度学习 | 语义分割模型 | 手术视频帧 | 290个手术视频中的2627帧图像,来自37个国家136个机构的153名外科医生 |
414 | 2025-04-25 |
Unreferenced English articles' translation quality-oriented automatic evaluation technology using sparse autoencoder under the background of deep learning
2022, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0270308
PMID:35830434
|
研究论文 | 本文提出了一种基于稀疏自编码器(SAE)和深度学习(DL)的自动翻译质量评估(TQA)模型,用于无参考英文文章的翻译质量评估 | 利用稀疏自编码器在深度学习背景下进行无监督学习,优化语言向量特征的提取,并将其引入自动翻译质量评估 | 未提及具体的数据集规模或模型在其他语言对上的泛化能力 | 实现无参考英文文章的高精度自动翻译质量评估 | 无参考英文文章的翻译质量 | 自然语言处理 | NA | 深度学习,稀疏自编码器(SAE) | SAE, AE | 文本 | 句子数量从1,000增加到6,000 |
415 | 2025-04-25 |
Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling
2021-Aug, Nature machine intelligence
IF:18.8Q1
DOI:10.1038/s42256-021-00357-4
PMID:40271424
|
研究论文 | 提出了一种结合药理学原理和神经常微分方程的新型神经-PK/PD框架,用于从纵向患者数据中预测患者响应时间进程 | 首次将深度学习方法与PK/PD建模相结合,直接从患者数据中学习控制微分方程,并能够模拟未测试给药方案的患者响应 | 需要验证在更广泛的患者群体和不同药物类型中的适用性 | 开发自动化预测患者响应时间进程的分析方法 | 患者对药物治疗的响应时间进程 | 机器学习 | NA | 神经常微分方程 | 神经-PK/PD模型 | 纵向患者数据 | 超过600名患者的临床数据集 |
416 | 2025-04-24 |
Comprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainability
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127845
PMID:40081250
|
研究论文 | 结合拉曼光谱和深度学习技术对四种有毒蓝藻进行分类的研究 | 采用多通道一维卷积神经网络(1D-CNN)结合SHAP解释性方法,提高了分类准确率并增强了模型的可解释性 | 仅针对四种蓝藻物种进行研究,样本多样性可能有限 | 开发一种快速准确识别有毒蓝藻物种的方法,以支持水质监测和有害藻华早期检测 | 四种有毒蓝藻物种:Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii 和 Microcystis aeruginosa | 机器学习 | NA | 拉曼光谱 | 1D-CNN | 光谱数据 | 四种蓝藻物种的光谱数据 |
417 | 2025-04-24 |
Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127931
PMID:40112588
|
研究论文 | 本研究提出了一种结合表面增强拉曼光谱(SERS)和深度学习的新方法,用于快速识别药食同源物质(MEHs) | 利用基于光谱集的SERS(称为'SERSome')与深度学习结合,开发了一种新型识别模型,避免了反应过程中额外保护剂的使用,并克服了MEHs的荧光干扰 | NA | 提高药食同源物质的质量控制和快速识别能力 | 药食同源物质(MEHs) | 机器学习 | NA | 表面增强拉曼光谱(SERS) | 深度学习 | 光谱数据 | NA |
418 | 2025-04-24 |
Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127937
PMID:40127553
|
研究论文 | 本文提出了一种基于iTransformer-BiLSTM(iTBi)深度学习算法和随机森林(RF)算法的LIBS定量分析模型,用于精确测定稀土矿石中的La、Ce和Nd元素浓度 | 提出iTBi-LIBS和iTBi-RF-LIBS集成模型,有效降低基质效应和光谱重叠干扰,提高了定量分析的准确性 | 样本量较小(35个样本),且浓度范围有限(La: 0-1.924wt%, Ce: 0-2.917wt%, Nd: 0-1.492wt%) | 开发一种高效的LIBS定量分析方法,用于稀土矿石中La、Ce和Nd元素的实时定量分析 | 稀土矿石中的La、Ce和Nd元素 | 机器学习 | NA | 激光诱导击穿光谱(LIBS) | iTransformer-BiLSTM(iTBi)、随机森林(RF) | 光谱数据 | 35个样本 |
419 | 2025-04-24 |
Intelligent Recognition of Goji Berry Pests Using CNN With Multi-Graphic-Occlusion Data Augmentation and Multiple Attention Fusion Mechanisms
2025-Aug, Archives of insect biochemistry and physiology
IF:1.5Q4
DOI:10.1002/arch.70060
PMID:40262026
|
研究论文 | 本文提出了一种改进的卷积神经网络(CNN)GojiNet,用于准确识别17种枸杞害虫 | 结合多图遮挡数据增强方法和多注意力融合机制,构建了GojiNet模型,提高了害虫识别的准确率 | 模型训练时间略有增加,且未提及在不同光照或环境条件下的泛化能力 | 解决枸杞害虫识别中传统人工检测方法的主观性、耗时和劳动密集型问题 | 17种枸杞害虫 | 计算机视觉 | NA | 多图遮挡数据增强方法 | CNN(GojiNet,基于ResNet18改进) | 图像 | 未明确提及具体样本数量,但涉及17种害虫的数据集 |
420 | 2025-04-24 |
Mitigating ambient RNA and doublets effects on single cell transcriptomics analysis in cancer research
2025-Jun-28, Cancer letters
IF:9.1Q1
DOI:10.1016/j.canlet.2025.217693
PMID:40185305
|
research paper | 该论文探讨了在癌症研究中如何减轻单细胞转录组学分析中环境RNA和双联体效应的影响 | 提出了使用计算方法和深度学习技术(如SoupX、DecontX和CellBender)来评估和消除环境RNA污染及背景噪声,提供了一种端到端的数据准备策略 | 未提及具体的技术局限性或数据集的限制 | 旨在提高单细胞转录组学数据的质量,以更准确地描述肿瘤微环境中的异质性,并促进精准肿瘤学的发展 | 单细胞转录组学数据 | 生物信息学 | 癌症 | scRNA-seq, deep learning | NA | 基因表达数据 | NA |