深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24240 篇文献,本页显示第 4201 - 4220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4201 2025-03-29
MSBiLSTM-Attention: EEG Emotion Recognition Model Based on Spatiotemporal Feature Fusion
2025-Mar-13, Biomimetics (Basel, Switzerland)
研究论文 提出了一种基于时空特征融合的EEG情感识别模型MSBiLSTM-Attention 结合多尺度卷积、双向长短期记忆网络和注意力机制,实现EEG信号的自动特征提取和分类 需要进一步验证模型在其他数据集上的泛化能力 提高基于EEG信号的情感识别准确率 EEG信号 机器学习 NA 深度学习 MSBiLSTM-Attention (多尺度CNN + BiLSTM + 注意力机制) EEG信号 SEED数据集
4202 2025-03-29
Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model
2025-Mar-12, Biology
研究论文 本文提出了一种基于Transformer的深度学习模型HiCENT,用于提升单细胞和批量Hi-C数据的质量 开发了HiCENT模型,首次将Transformer架构应用于Hi-C数据的增强,显著提升了单细胞和批量Hi-C数据的质量 未明确提及模型在不同细胞类型或物种间的泛化能力 解决Hi-C数据(特别是单细胞Hi-C数据)中测序深度不足和噪声高的问题,提升染色质相互作用数据的质量 批量Hi-C数据和单细胞Hi-C数据 生物信息学 NA Hi-C技术 Transformer 基因组相互作用数据 GM12878细胞系和五个人类细胞系的Hi-C数据
4203 2025-03-29
Deep learning-based automated detection and diagnosis of gouty arthritis in ultrasound images of the first metatarsophalangeal joint
2025-Mar-08, Medical ultrasonography IF:1.8Q3
research paper 本研究开发了一种基于深度学习的模型,用于自动检测和诊断第一跖趾关节超声图像中的痛风性关节炎 使用深度残差卷积神经网络(CNN)和Grad-CAM可视化技术,优化了不同残差块数量的ResNet18模型,实现了高精度的痛风性关节炎自动诊断 研究为回顾性研究,样本量相对较小(260名患者),可能影响模型的泛化能力 开发一种自动检测和诊断痛风性关节炎的深度学习模型 第一跖趾关节的超声图像 digital pathology gouty arthritis ultrasound imaging ResNet18 CNN image 260名患者(149名痛风患者,111名对照组)的2401张超声图像
4204 2025-03-29
GM-CBAM-ResNet: A Lightweight Deep Learning Network for Diagnosis of COVID-19
2025-Mar-03, Journal of imaging IF:2.7Q3
研究论文 提出了一种名为GM-CBAM-ResNet的轻量级深度学习网络,用于基于心电图(ECG)图像诊断COVID-19 通过将卷积模块替换为Ghost模块(GM)并在ResNet的残差模块中添加卷积块注意力模块(CBAM),构建了轻量级网络GM-CBAM-ResNet 未提及具体的数据集规模或多样性限制 开发一种轻量级深度学习网络,用于快速准确诊断COVID-19 COVID-19患者的心电图图像 计算机视觉 COVID-19 深度学习 GM-CBAM-ResNet, ResNet, GM-ResNet, CBAM-ResNet 图像 使用公开的'ECG Images dataset of Cardiac and COVID-19 Patients'数据集
4205 2025-03-29
Comprehensive prediction and analysis of human protein essentiality based on a pretrained large language model
2025-Mar, Nature computational science IF:12.0Q1
研究论文 本文开发了一种基于预训练蛋白质语言模型的深度学习模型PIC,用于预测人类必需蛋白质(HEPs),并在人类、细胞系和小鼠三个层面上提供了全面的预测结果 通过微调预训练的蛋白质语言模型,开发了PIC模型,不仅显著优于现有方法,还首次在人类、细胞系和小鼠三个层面上预测HEPs,并定义了蛋白质必需性评分 未提及具体的数据集大小或实验验证的详细范围 开发一种高效、准确的计算方法来预测人类必需蛋白质(HEPs) 人类必需蛋白质(HEPs) 自然语言处理 乳腺癌 深度学习,蛋白质语言模型 PIC(基于预训练蛋白质语言模型的深度学习模型) 蛋白质序列 617,462个人类微蛋白质
4206 2025-03-29
Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy
2025-Mar, Nature computational science IF:12.0Q1
research paper 本文介绍了一种基于动态图卷积网络的深度学习框架DySPred,用于利用大规模真实世界药物警戒数据预测免疫检查点抑制剂(ICI)在人群水平的毒性特征 DySPred框架能够准确预测不同人口群体和癌症类型的毒性风险,在小样本情况下表现稳健,并能揭示毒性随时间变化的趋势 未明确提及具体局限性 开发一种方法用于人群水平的ICI诱导毒性特征分析,以促进癌症免疫治疗的进步 免疫检查点抑制剂(ICI)疗法及其诱导的毒性特征 machine learning cancer 动态图卷积网络 DySPred (基于GCN的深度学习框架) 药物警戒数据 大规模真实世界数据(未提供具体数量)
4207 2025-03-29
Integration of longitudinal load-bearing tissue MRI radiomics and neural network to predict knee osteoarthritis incidence
2025-Mar, Journal of orthopaedic translation IF:5.9Q1
研究论文 本研究开发并测试了一种结合负重组织MRI影像组学和临床变量的模型(LBTC-RM),用于预测膝关节骨关节炎(KOA)的发生 首次整合纵向负重组织MRI影像组学和神经网络算法预测KOA发生,提供了一种更可解释且临床适用的早期KOA检测方法 需要未来在不同人群中进一步验证以增强其临床适用性和普适性 开发预测膝关节骨关节炎(KOA)发生的模型 700个基线时无放射学KOA的膝关节,包含2164个4年随访期间的膝关节MRI 数字病理学 膝关节骨关节炎 MRI影像组学 神经网络 MRI图像 总开发队列1082例(542例病例 vs 540例对照),总测试队列1082例(534例病例 vs 548例对照)
4208 2025-03-29
Multimodal Deep Learning Model for Cylindrical Grasp Prediction Using Surface Electromyography and Contextual Data During Reaching
2025-Feb-27, Biomimetics (Basel, Switzerland)
research paper 该研究提出了一种多模态深度学习模型,用于结合表面肌电信号和上下文数据预测圆柱形抓握动作 整合了表面肌电信号和上下文信息的多模态模型,相比传统单模态方法能更好地预测真实场景中的抓握动作 仅针对圆柱形抓握这一特定抓握类型进行研究,未涵盖其他常见抓握类型 改进人机交互系统中抓握动作的预测精度 人体抓握动作(特别是圆柱形抓握) machine learning NA 表面肌电信号(EMG)采集 CNN(用于EMG处理)和全连接网络(用于上下文信息处理)的混合架构 生物电信号(EMG)和上下文数据 未明确说明受试者数量
4209 2025-03-29
Concealed Weapon Detection Using Thermal Cameras
2025-Feb-26, Journal of imaging IF:2.7Q3
研究论文 本文提出了一种利用热成像和深度学习的两阶段方法,用于隐蔽手枪检测,为执法和监控应用提供潜在的实时解决方案 提出了一种轻量级算法,适用于低端嵌入式设备,并创建了一个针对隐蔽场景定制的热数据集 实验数据集可能不够广泛,且仅针对手枪检测 开发一种高效、可靠的隐蔽武器检测技术,以提升公共安全 隐蔽手枪 计算机视觉 NA 热成像和深度学习 NA 热成像图像 定制热数据集(具体数量未提及)
4210 2025-03-29
Explainable Siamese Neural Networks for Detection of High Fall Risk Older Adults in the Community Based on Gait Analysis
2025-Feb-22, Journal of functional morphology and kinesiology IF:2.6Q1
research paper 该研究提出了一种基于步态分析的深度学习新方法,用于检测社区中高跌倒风险的老年人 将生物力学时间序列数据转化为视觉表示,并应用CNN和SNN进行跌倒风险评估,同时利用Grad-CAM增强模型的可解释性 未提及具体的数据集规模限制或模型在其他人群中的泛化能力 提高老年人跌倒风险预测的准确性,以实施及时预防措施 社区中的老年人 machine learning geriatric disease gait analysis CNN, SNN, RF time-series data, visual representations NA
4211 2025-03-29
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
研究论文 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的整个信息内容,且对不同的染色模式和成像协议具有鲁棒性 NA 开发一种定量测量方法,用于在不同数据集和癌症类型之间进行有意义的比较 癌细胞核的形态学特征 数字病理学 癌症 最优传输、特征提取、深度学习 TBM框架 图像 来自TCGA和人类蛋白质图谱等大型数据集的多种癌症组织类型样本
4212 2025-03-29
A Narrative Review on the Role of Artificial Intelligence (AI) in Colorectal Cancer Management
2025-Feb, Cureus
review 本文综述了人工智能(AI)在结直肠癌管理中的作用及其潜在优势 探讨了AI在结直肠癌筛查、病理评估、精准手术和术后护理中的创新应用 多中心研究和随机试验的缺乏限制了AI在标准实践中全面评估和整合的可能性 评估AI在结直肠癌管理中的应用及其对临床实践的潜在影响 结直肠癌患者,特别是35岁以上的成年患者 digital pathology colorectal cancer deep learning NA NA 122篇文献(包括随机对照试验、队列研究、荟萃分析等)
4213 2025-03-29
TriCvT-DTI: Predicting Drug-Target Interactions Using Trimodal Representations and Convolutional Vision Transformers
2025-Jan-30, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种名为TriCvT-DTI的新方法,通过结合分子图像、化学序列特征和药物图表示来预测药物-靶标相互作用 结合了分子图像、化学序列特征和药物图表示,采用双向多头注意力机制和卷积视觉变换器(CvTs)来全面捕捉药物的结构、空间和功能特征 未明确提及具体局限性 提高药物-靶标相互作用预测的准确性和效率 药物和靶标之间的相互作用 机器学习 NA 卷积视觉变换器(CvTs)和双向多头注意力机制 TriCvT-DTI 分子图像、化学序列特征、图表示 三个数据集:Human、C. elegans和Davis
4214 2025-03-29
Using transformer-based models and social media posts for heat stroke detection
2025-01-04, Scientific reports IF:3.8Q1
研究论文 本研究评估了基于transformer的预训练语言模型在分类与热射病相关的日语推文中的性能,并探讨了结合社交媒体和人工智能进行基于事件的公共卫生监测的潜力 首次将transformer-based模型应用于日语推文的热射病分类,并通过时空和动画视频可视化展示了推文与热射病紧急医疗疏散之间的相关性 社交媒体帖子的主观性和未经临床诊断的可靠性问题仍然存在挑战 评估基于transformer的预训练语言模型在热射病相关推文分类中的性能,探索社交媒体与人工智能结合的公共卫生监测潜力 日语推文和热射病紧急医疗疏散数据 自然语言处理 热射病 transformer-based预训练语言模型 transformer 文本(社交媒体帖子) 未明确说明样本数量
4215 2025-03-29
Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images
2025-01-03, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合UNet分割和贝叶斯机器学习的新型可解释人工智能技术,用于MRI图像中脑肿瘤的分类 提出了一种新的可解释人工智能技术XAISS-BMLBT,结合了MEDU-Net+分割、ResNet50特征提取和贝叶斯正则化人工神经网络(BRANN)分类,以及改进的径向移动优化模型进行超参数调优 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 提高脑肿瘤在MRI图像中的分割和分类准确率,以辅助医生进行更快速和准确的诊断 MRI图像中的脑肿瘤 数字病理学 脑肿瘤 MRI扫描、深度学习 UNet、ResNet50、BRANN 图像 使用了基准数据库,但未提及具体样本数量
4216 2025-03-29
Assessment of choroidal vessels in healthy eyes using 3-dimensional vascular maps and a semi-automated deep learning approach
2025-01-03, Scientific reports IF:3.8Q1
研究论文 使用3D深度学习方法和半自动化技术评估健康眼睛中的脉络膜血管 采用3D深度学习方法结合半自动化技术对脉络膜血管进行非侵入性评估,创新性地提供了脉络膜血管的三维可视化 研究样本量较小(80只眼睛),且为回顾性研究,可能存在选择偏差 评估健康眼睛中脉络膜血管的特征及其与年龄和性别的关系 健康眼睛的脉络膜血管 数字病理学 NA swept-source OCT, 深度学习 ResUNet OCT扫描图像 80只眼睛(来自53名患者)
4217 2025-03-29
pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning
2025-01-02, Scientific reports IF:3.8Q1
research paper 提出了一种名为pACP-HybDeep的高可靠性模型,用于准确预测抗癌肽 结合了基于注意力机制的ProtBERT-BFD编码器和CTDT结构信息编码,以及基于k近邻的二叉树生长算法和CNN+RNN深度学习模型 未提及模型在更广泛数据集上的表现或实际临床应用中的潜在限制 开发一种高效可靠的抗癌肽预测工具 抗癌肽 machine learning cancer ProtBERT-BFD编码器, CTDT结构信息编码, k近邻算法 CNN+RNN peptide sequences 三个独立数据集Ind-S1, Ind-S2, Ind-S3
4218 2025-03-29
A deep learning-based multi-view approach to automatic 3D landmarking and deformity assessment of lower limb
2025-01-02, Scientific reports IF:3.8Q1
研究论文 提出一种基于深度学习的多视角方法,用于自动3D地标检测和下肢畸形评估 采用多视角渲染和金字塔式卷积神经网络整合技术,自动检测CT图像中的3D地标,提高地标检测和指标评估的速度与准确性 未提及具体样本量及数据来源的多样性,可能影响模型的泛化能力 开发一种自动检测下肢CT图像中3D地标的方法,以可靠诊断骨骼疾病 下肢CT图像中的骨骼地标 计算机视觉 骨骼疾病 CT扫描 金字塔式CNN 3D图像 NA
4219 2025-03-29
Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML
2025-01-02, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种创新的1秒信号分割方法,并评估了三种先进深度学习模型在利用PPG信号估计血糖水平方面的性能 创新的1秒信号分割技术显著提高了准确性和计算效率,并在嵌入式设备上实现了即时血糖估计 训练数据在手术和麻醉期间收集,可能影响模型在正常状态下的泛化能力 开发一种非侵入性、准确且方便的血糖监测方法 PPG信号 机器学习 糖尿病 PPG 深度学习模型 信号数据 手术和麻醉期间收集的训练数据及单独测试数据集
4220 2025-03-29
Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring
2025-Jan, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文提出了一种基于深度学习的自动化评分方法,用于评估数字乳腺X线摄影(DM)和数字乳腺断层合成(DBT)系统的任务性能 使用具有随机羟基磷灰石微钙化的逼真乳腺体模和基于Resnet-18架构的半自动化深度学习图像评分方法,解决了现有体模方法背景不真实、评分主观和信号模式不具代表性的问题 研究仅基于体模实验,未涉及真实临床数据 开发一种客观的任务型图像质量评估方法,用于乳腺X线摄影和断层合成系统 数字乳腺X线摄影(DM)和数字乳腺断层合成(DBT)系统 数字病理学 乳腺癌 深度学习和ROC分析 Resnet-18 图像 实验使用临床乳腺X线摄影系统收集的2D和伪3D乳腺X线照片
回到顶部