深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 39696 篇文献,本页显示第 421 - 440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
421 2026-02-06
Quantitative metrics of CT images may magnify the potential of radiation dose reduction
2025-Oct-31, Medicine IF:1.3Q2
研究论文 本研究探讨了CT图像中可检测性指数(d')与小低对比度病变实际检测性能的关系,并评估了不同算法和矩阵对d'的影响 通过多读者多病例研究,结合定量指标与观察者性能的强相关性分析,揭示了定量指标可能高估迭代重建和深度学习算法在降低辐射剂量方面的潜力 研究基于体模实验,未涉及真实患者数据,且d'在不同重建方法间无法直接比较 评估CT图像定量指标与辐射剂量降低潜力之间的关系 体模扫描图像 医学影像分析 NA CT扫描、滤波反投影、迭代重建、深度学习算法 深度学习 CT图像 体模在9种辐射暴露下扫描 NA NA 可检测性指数(d')、受试者工作特征曲线下面积、Spearman秩和相关系数 160层CT扫描仪、ImQuest软件(Duke)
422 2026-02-06
Tripartite strategy for dual reduction of radiation and iodine dose in obese CCTA: High-iodine contrast, 80 kVp, and deep learning reconstruction
2025-Oct-31, Medicine IF:1.3Q2
研究论文 本研究评估了一种结合高碘浓度造影剂、80 kVp扫描和深度学习图像重建的三联低剂量策略,用于肥胖患者的冠状动脉CT血管成像,旨在同时降低辐射和碘剂量并保持诊断质量 首次在肥胖患者中提出并验证了结合高碘浓度造影剂、80 kVp扫描和深度学习图像重建的三联低剂量策略,实现了辐射剂量和碘负荷的同步显著降低,同时维持了图像质量和诊断准确性 单中心前瞻性试验,样本量相对较小(100例患者),且诊断性能验证仅基于20例患者的亚组分析,可能限制结果的普遍性 评估一种低剂量策略在肥胖患者冠状动脉CT血管成像中同时减少辐射暴露和碘负荷的可行性和效果 肥胖患者(BMI ≥30 kg/m²)的冠状动脉CT血管成像 数字病理学 心血管疾病 冠状动脉CT血管成像,深度学习图像重建 深度学习 医学影像(CT图像) 100例肥胖患者(低剂量组50例,标准剂量组50例),其中20例亚组进行有创冠状动脉造影对比 NA NA 图像噪声,信噪比,对比噪声比,主观图像质量评分(5分制),诊断准确性(敏感性,阴性预测值,血管水平准确率) NA
423 2026-02-06
RETRACTED ARTICLE: Hierarchical attention mechanism in deep learning improving music therapy rehabilitation through context aware emotion mapping
2025-Oct-14, Disability and rehabilitation. Assistive technology
研究论文 本研究开发了一种基于分层注意力机制的深度学习框架,用于改进音乐治疗康复中的情境感知情绪映射 通过整合分层注意力机制处理多层次情境线索,实现短期情感波动和长期情绪模式的捕捉,从而提升音乐治疗的精准性和适应性 仅进行了初步实验评估,样本规模和长期效果验证可能有限 增强情绪感知音乐治疗的精确性和适应性,以促进康复效果 康复患者,特别是需要音乐治疗干预的个体 机器学习 老年疾病 深度学习 深度学习框架 生理信号、行为响应、环境参数 NA NA 分层注意力机制 NA NA
424 2026-02-06
A computer-aided diagnosis (CAD) system based on convolutional neural networks for lung cancer diagnosis from 2D [18F]- PET/CT images
2025-Oct, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究开发了一种基于卷积神经网络的计算机辅助诊断系统,用于从2D [18F]-PET/CT图像中自动诊断肺癌 提出了一种结合残差模块和挤压-激励模块的自定义CNN架构(Res-SE Net),用于肺癌的多类分类,并采用基于患者的数据分割策略以避免数据泄露 未明确说明样本的多样性或外部验证集的详细特征,可能影响模型的泛化能力 自动分类肺部状况为正常、非小细胞肺癌和小细胞肺癌 146名患者的1974次PET/CT扫描 计算机视觉 肺癌 [18F] FDG PET/CT成像 CNN 图像 146名患者(1974次扫描) 未明确指定,但可能基于PyTorch或TensorFlow Res-SE Net(结合残差和挤压-激励模块的自定义CNN),预训练CNN 准确率, 灵敏度 NA
425 2026-02-06
Robust deep learning-based patient-specific quality assurance prediction models for novel dual-layer MLC linac
2025-Oct, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究探讨了利用深度学习模型稳健预测配备新型双层多叶准直器的Halcyon直线加速器上固定野调强放疗计划的患者特定质量保证结果 结合了Shuffle Attention机制和深度不平衡回归技术,以增强深度学习模型在极端不平衡分布的伽马通过率值预测中的精度和鲁棒性 研究仅基于214个治疗计划的数据,样本量相对有限,且仅针对特定类型的直线加速器 开发稳健的深度学习模型,用于预测患者特定质量保证结果,以提高放疗计划验证的效率和准确性 固定野调强放疗计划及其对应的Portal Dosimetry验证数据 机器学习 NA Portal Dosimetry CNN 图像 214个治疗计划,包含1394个射束方向 NA ResNet, Att-ResNet, ALDS-ResNet 平均绝对误差, 皮尔逊相关系数 NA
426 2026-02-06
An automated patient-specific segment reduction-based beam angle optimization technique for deep learning auto-planning for early breast cancer
2025-Oct, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究提出了一种基于自动分段缩减的射束角度优化技术,用于改进早期乳腺癌放射治疗中的深度学习自动计划 开发了一种自动化的分段缩减方法,用于优化VMAT的弧段跨度和IMRT的射束配置,无需人工干预,提高了计划质量和效率 研究仅纳入20例左侧乳腺癌患者,样本量较小,且所有患者均在深吸气屏气条件下治疗,可能限制了结果的普适性 改进早期乳腺癌放射治疗中的深度学习自动计划,通过优化射束角度来提升剂量分布并减少危及器官照射 早期左侧乳腺癌患者 医学影像与放射治疗计划 乳腺癌 深度学习自动计划、分段缩减优化、剂量模拟 深度学习模型 放射治疗计划数据、剂量分布数据 20例左侧乳腺癌患者 NA NA 剂量学标准、适形指数、剂量模拟指数、统计比较 NA
427 2026-02-06
Evaluation of deep learning-based automated radiotherapy planning for early-stage lung cancer using SBRT-VMAT: A comparison with manual planning
2025-Oct, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究评估了基于深度学习的自动化SBRT-VMAT放疗计划在早期肺癌中的可行性,并与人工计划进行了比较 开发了一种基于深度学习的剂量分布预测模型,并将其集成到RatoGuide原型中,用于自动化生成SBRT-VMAT放疗计划,减少了人工干预 研究样本量相对较小(124例训练数据,8例测试数据),且仅针对早期肺癌,未涵盖其他类型或阶段的肺癌 评估基于深度学习的自动化放疗计划在早期肺癌SBRT-VMAT治疗中的可行性和临床可接受性 早期肺癌患者(包括中央型和周围型病例)的放疗计划 医学影像分析 肺癌 深度学习 深度学习模型 CT图像 124例早期肺癌病例(62例中央型,62例周围型)用于训练,8例测试计划 NA NA DVH指标 NA
428 2026-02-06
RETRACTED ARTICLE: Personalised sports rehabilitation analysis using a fitness enhanced model based on big data and deep learning
2025-Sep-29, Disability and rehabilitation. Assistive technology
研究论文 本研究通过结合可穿戴设备、传感器和大数据分析,开发了一种基于健身气功的现代健康康复管理模型,用于个性化运动康复分析 将嵌入式技术和大数据分析应用于健身气功,创建了一个技术增强的个性化康复模型,相比传统方法在生理指标和依从率上显示出显著提升 NA 建立一个现代健康康复管理模型,以改善生理功能并提升整体生活质量 健身气功练习者,通过可穿戴设备和环境传感器收集数据 机器学习 NA 大数据分析,可穿戴设备与传感器技术 深度学习模型 生理数据(如心率变异性、呼吸率、运动效率、压力水平) NA NA NA 心率变异性增加百分比,呼吸率降低百分比,运动效率提升百分比,压力水平下降百分比,依从率,相关性系数(r值) NA
429 2026-02-06
RETRACTED ARTICLE: Enhancing communication for people with hearing disabilities through robust sign language recognition using deep learning and the internet of things
2025-Sep-24, Disability and rehabilitation. Assistive technology
研究论文 提出一种结合深度学习和物联网的鲁棒手语识别方法,以增强听力障碍人士的沟通能力 提出ECRSLR-SAEHD方法,整合高斯滤波、EfficientNetB7特征提取、稀疏自编码器识别及芬尼克狐算法超参数调优,并利用物联网辅助应用 未提及方法在复杂背景、光照变化或实时性方面的具体表现,也未说明数据集的具体规模和多样性 通过鲁棒的手语识别技术改善听力障碍人士的日常交流、教育获取和生活质量 听力障碍人士及其照顾者 计算机视觉 听力障碍 深度学习,物联网 稀疏自编码器,EfficientNetB7 图像 NA NA EfficientNetB7,稀疏自编码器 准确率 NA
430 2026-02-06
RETRACTED ARTICLE: Intelligent sports rehabilitation: integrating deep learning and real-time monitoring to achieve personalized rehabilitation
2025-Sep-19, Disability and rehabilitation. Assistive technology
研究论文 本研究探讨了将太极拳融入体育运动员强制戒毒康复计划的心理益处 将太极拳这一传统文化实践整合到现代体育康复中,以评估其对心理健康的独特影响 研究样本仅限于特定运动员群体,可能无法推广到其他人群;干预周期相对较短 评估太极拳在体育康复中的心理优势 参与强制戒毒康复计划的体育运动员 NA NA 随机对照试验 NA 心理评估数据 172名参与者,平均分为太极拳干预组和对照组 NA NA 情绪健康、自我调节和心理韧性改善 NA
431 2026-02-06
RETRACTED ARTICLE: Multimodal deep learning methods for speech and language rehabilitation: a cross-sectional observational study
2025-Sep-05, Disability and rehabilitation. Assistive technology
研究论文 本研究提出了一种改进的多模态深度学习管道,结合音频、视频和文本信息,为言语和语言康复提供个性化治疗 采用交叉注意力融合的多模态分层Transformer架构,联合建模语音声学、面部动态、唇部发音和语言上下文,并通过自监督预训练和数据增强适应患者变异性 未明确说明样本规模或具体临床验证细节,可能受限于数据可用性和患者异质性 开发智能多模态深度学习系统以革新言语和语言康复治疗 患有神经障碍、发育迟缓或身体残疾导致沟通障碍的患者 自然语言处理 NA 深度学习 Transformer 音频, 视频, 文本 NA NA 交叉注意力融合多模态分层Transformer 准确率, 患者参与度, 可测量治疗效果 NA
432 2026-02-06
RETRACTED ARTICLE: Gesture recognition and response system for special education using computer vision and human-computer interaction technology
2025-Jul-08, Disability and rehabilitation. Assistive technology
研究论文 本研究提出了一种用于特殊教育的综合手势识别与响应系统,利用先进的深度学习架构和机器学习算法,并通过遗传算法进行模型压缩以优化在资源受限设备上的部署 结合多种深度学习模型(AlexNet、VGG19、ResNet、MobileNet)与机器学习算法(SVM、随机森林),并引入遗传算法进行模型压缩,显著减小模型尺寸并提升推理速度 未明确说明数据集的具体规模和多样性细节,未来需扩展手势库并整合多模态输入 开发适用于特殊教育的手势识别与响应系统,作为残疾人士的辅助工具,促进包容性学习体验 手势识别系统及其在特殊教育环境中的应用 计算机视觉 NA 深度学习、机器学习、遗传算法 CNN 图像 多样化的手势数据集(具体数量未说明) TensorFlow, PyTorch, Scikit-learn AlexNet, VGG19, ResNet, MobileNet 准确率 移动和嵌入式平台(具体资源未说明)
433 2026-02-06
Profiling electric signals of electrogenic probiotic bacteria using self-attention analysis
2025-Apr-22, Applied microbiology and biotechnology IF:3.9Q2
研究论文 本研究通过自组装电路检测两种产电益生菌在鸡胚绒毛尿囊膜和小鼠肠道内产生的电信号,并利用自注意力机制分析其电谱特征 首次将自注意力深度学习模块应用于益生菌电信号分析,揭示了两种细菌独特的电谱特征 研究主要基于体外和小鼠模型,尚未在人体中进行验证 开发基于电信号分析的益生菌疗效评估方法 产电益生菌(Leuconostoc mesenteroides 和 Lactococcus lactis) 生物医学工程 NA 自组装电路检测、铁嗪测定法 深度学习 电信号 两种益生菌在鸡胚绒毛尿囊膜和小鼠肠道中的实验 NA 自注意力机制 电压变化、电谱区分度 NA
434 2026-02-06
An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis
2025-02, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种可解释的时空耦合学习统一框架,并应用于动态脑功能连接分析 该框架基于时空相关性构建深度学习网络,能有效整合节点表示与节点间连接的时间变化耦合关系,并探索每个时间步的时空演化,提高了分析结果的可解释性 NA 开发一个可解释的深度学习框架,用于挖掘时间序列数据中的时空耦合信息,以揭示生物机制 fMRI和MEG等时间序列数据,特别是大脑动态功能连接 机器学习 NA fMRI, MEG 深度学习网络 时间序列数据 NA NA NA NA NA
435 2026-02-06
RETRACTED: Enhanced E-commerce decision-making through sentiment analysis using machine learning-based approaches and IoT
2025, PloS one IF:2.9Q1
研究论文 本研究通过结合物联网(IoT)和机器学习技术,利用情感分析提升电子商务决策能力,旨在优化客户购物体验并改进企业运营策略 创新性地将IoT数据收集与多种机器学习算法(包括深度学习模型如GRU和LSTM)结合,用于电子商务决策支持,并发现AdaBoosting在多项性能指标上超越其他方法 未详细说明数据的具体来源、规模或隐私处理措施,且未讨论模型在不同电子商务场景中的泛化能力 提升电子商务决策水平,通过情感分析改善客户购物体验和企业销售策略 电子商务中的客户行为数据、偏好数据及产品需求数据 自然语言处理 NA 情感分析、机器学习算法 logistic regression, Naïve Bayes, SVM, Random Forest, AdaBoosting, GRU, LSTM 文本数据(来自IoT设备收集的客户行为和偏好数据) NA NA GRU, LSTM F1分数, 准确率, 精确率, 召回率 NA
436 2026-02-06
Can machine learning help accelerate article screening for systematic reviews? Yes, when article separability in embedding space is high
2025-Jan, Research synthesis methods IF:5.0Q1
研究论文 本文全面测试了机器学习模型在加速教育领域系统综述文献筛选中的应用,并提出了基于嵌入空间聚类可分性的启发式方法来预测模型性能 发现嵌入空间中相关与不相关文献聚类的可分性(整体R²=0.81)能强预测机器学习筛选效果,提出了一种通用启发式方法 研究仅基于教育领域的系统综述数据集,未验证其他学科领域的普适性 评估机器学习模型加速系统综述文献筛选的可行性并探索性能预测指标 教育领域系统综述的文献数据集 自然语言处理 NA 机器学习模型测试、大语言模型提示工程 经典机器学习模型、深度学习模型、GPT-3.5、GPT-4 文本 多个实际系统综述数据集(具体数量未说明) NA NA 召回率、工作量节省百分比 NA
437 2026-02-06
Efficient multi-phenotype genome-wide analysis identifies genetic associations for unsupervised deep-learning-derived high-dimensional brain imaging phenotypes
2024-Dec-08, medRxiv : the preprint server for health sciences
研究论文 本文提出了一种名为JAGWAS的新工具,用于高效分析多表型全基因组关联研究,并将其应用于高维无监督深度学习衍生的脑成像表型,以识别更多遗传位点 开发了JAGWAS工具,能够利用单表型汇总统计高效计算数百个表型的多变量关联统计,显著提升了从高维脑成像数据中发现遗传关联的能力 研究主要基于英国生物银行的数据,可能在其他人群中的普适性有待验证;方法依赖于预先计算好的单表型汇总统计 开发高效的多表型全基因组关联分析方法,以发现与高维脑成像表型相关的遗传位点 无监督深度学习衍生的脑成像表型(UDIPs)及其遗传关联 机器学习 NA 全基因组关联研究(GWAS),脑磁共振成像(MRI) 深度学习 图像,遗传数据 英国生物银行(UKB)的发现和复制队列 NA NA 独立复制的基因组位点数量,映射基因数量,与脑组织eQTL重叠的基因数量 NA
438 2026-02-06
Generative 3D Cardiac Shape Modelling for in-silico Trials
2024-11-22, Studies in health technology and informatics
研究论文 提出一种基于神经符号距离场的深度学习方法来建模和生成合成主动脉形状,用于计算机模拟试验 利用可训练的嵌入向量编码几何特征,通过神经符号距离场的零级集表示形状,能够高保真地表示主动脉形状并生成类似真实患者解剖结构的新形状 NA 开发用于计算机模拟试验的生成式3D心脏形状建模方法 主动脉根部网格形状 计算机视觉 心血管疾病 CT图像重建 深度学习 3D网格图像 NA NA 神经符号距离场 NA NA
439 2026-02-06
Privacy Risk Assessment for Synthetic Longitudinal Health Data
2024-08-30, Studies in health technology and informatics
研究论文 本文评估了合成纵向健康数据的隐私风险,应用Anonymeter框架分析独特性、可链接性和属性推断等漏洞 首次将欧洲数据保护委员会认可的隐私风险框架应用于流行病学领域的合成数据生成研究,重点关注异常值的脆弱性 隐私风险评估仍是一个开放性问题,实施和结果解释过程中存在挑战 评估合成数据发布时的隐私风险,以符合数据保护指南 基于DONALD队列研究(1312名参与者,16个时间点)生成的合成纵向健康数据 机器学习 NA 合成数据生成方法 深度学习 纵向健康数据 1312名参与者,16个时间点 NA NA 隐私评分 NA
440 2026-02-06
Predicting Overall Survival of Glioblastoma Patients Using Deep Learning Classification Based on MRIs
2024-08-30, Studies in health technology and informatics
研究论文 本研究开发了一种基于深度学习的MRI图像分类方法,用于预测胶质母细胞瘤患者的总生存期 首次将多序列MRI图像融合并结合ResNet50架构与bagging模型,实现胶质母细胞瘤患者生存期的三分类预测 模型性能仍有提升空间(F1分数0.51),未说明样本来源的多样性或外部验证结果 通过深度学习自动分析MRI图像,预测胶质母细胞瘤患者的总生存期 胶质母细胞瘤患者的MRI扫描图像(FLAIR, T1, T1CE, T2序列) 计算机视觉 胶质母细胞瘤 MRI成像 CNN 图像 未明确说明具体样本数量 未明确说明 ResNet50 F1-score, 准确率 未明确说明
回到顶部