深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 30476 篇文献,本页显示第 4461 - 4480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4461 2025-07-07
Streamlining tuberculosis detection with foundation model-based weakly supervised transformer
2025-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于基础模型的弱监督Transformer方法,用于显微镜图像中的结核杆菌检测 该方法引入了两个关键创新点:利用跨领域迁移学习将UNI基础模型应用于结核杆菌检测,以及采用仅需图像级标签的弱监督方法,显著降低了标注负担 未提及具体局限性 开发一种可扩展的自动化结核病检测方法,减少标注需求和预处理工作 显微镜图像中的结核杆菌(MTB) 数字病理学 结核病 弱监督学习 Transformer 图像 大型多样化数据集(具体数量未提及)
4462 2025-07-07
Generative adversarial network augmented data for improved heart sound abnormality detection
2025-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本研究利用生成对抗网络(GAN)合成冠状动脉疾病(CAD)类似的心音片段,以增强现有数据集,从而提高心音异常检测的分类性能 采用渐进式Wasserstein GAN架构生成高质量音频片段,并通过后处理步骤(如带通滤波)进一步提升合成样本的保真度 研究依赖于PhysioNet/Computing in Cardiology Challenge 2016数据集,该数据集存在规模有限和类别不平衡的问题 解决心音分析中数据集规模有限和类别不平衡的问题,提升心音异常检测的性能 冠状动脉疾病(CAD)和健康心音样本 生物医学信号处理 心血管疾病 生成对抗网络(GAN) Progressive Wasserstein GAN 音频 PhysioNet/Computing in Cardiology Challenge 2016数据集中的CAD和健康心音样本
4463 2025-07-07
CRCpred: An AI-ML tool for colorectal cancer prediction using gut microbiome
2025-Sep, Computers in biology and medicine IF:7.0Q1
research paper 开发了一个基于AI-ML的工具CRCpred,用于通过肠道微生物组预测结直肠癌 使用混合机器学习和深度学习算法,结合来自8个国家11项研究的1728个公开可用的宏基因组样本,开发了CRCpred工具 训练数据和算法可能限制了预测的准确性 通过肠道微生物组预测结直肠癌 肠道微生物组 machine learning colorectal cancer metagenomic sequencing XGBoost metagenomic samples 1728个公开可用的宏基因组样本
4464 2025-07-07
Enhancing cancer diagnostics through a novel deep learning-based semantic segmentation algorithm: A low-cost, high-speed, and accurate approach
2025-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 提出一种新型的基于深度学习的语义分割算法,用于增强癌症诊断,具有低成本、高速度和准确性 提出了一种新型的卷积神经网络架构,通过多尺度卷积、多尺度特征提取、下采样策略和特征图融合方法,显著提高了性能并降低了计算复杂度 未提及具体在哪些低资源环境下的实际应用效果,也未讨论算法对不同类型癌症的普适性 开发一种计算成本低、性能优越的医学图像分割方法,以促进癌症诊断在临床环境中的广泛应用 医学图像分割,特别是肺肿瘤、脾脏和胰腺肿瘤的分割 数字病理学 肺癌, 胰腺癌 深度学习 CNN 图像 NA
4465 2025-07-07
Ultra-low-dose coronary CT angiography via super-resolution deep learning reconstruction: impact on image quality, coronary plaque, and stenosis analysis
2025-Aug, European radiology IF:4.7Q1
research paper 本研究探讨了超分辨率深度学习重建(SR-DLR)在降低冠状动脉CT血管造影(CCTA)辐射剂量中的应用及其对图像质量、冠状动脉斑块和狭窄分析的影响 首次将超分辨率深度学习重建(SR-DLR)应用于超低剂量CCTA,实现了60%的辐射剂量降低,同时保持了图像质量和临床分析的准确性 样本量较小(仅50名患者),且未评估SR-DLR在更广泛临床场景中的适用性 评估SR-DLR在降低CCTA辐射剂量中的效果及其对图像质量和临床分析的影响 50名接受低剂量和超低剂量CCTA扫描的患者 digital pathology cardiovascular disease coronary CT angiography (CCTA), super-resolution deep learning reconstruction (SR-DLR) deep learning medical imaging 50名患者,48个冠状动脉节段
4466 2025-07-07
Normative values for lung, bronchial sizes, and bronchus-artery ratios in chest CT scans: from infancy into young adulthood
2025-Aug, European radiology IF:4.7Q1
research paper 该研究通过胸部CT扫描,评估了从学龄前到青年期支气管和动脉尺寸的发育趋势,并提供了相关参数的规范值 利用自动化深度学习算法计算支气管和动脉参数,首次提供了从婴儿期到青年期的支气管-动脉比率规范值 研究样本仅包括375例正常吸气胸部CT扫描,可能不足以代表所有年龄段 评估胸部CT定量参数的发育趋势并提供规范值 0至24岁参与者的胸部CT扫描数据 digital pathology NA CT扫描 deep learning-based algorithm image 375例正常吸气胸部CT扫描(女性156例,男性219例)
4467 2025-07-07
PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography
2025-Aug, European radiology IF:4.7Q1
research paper 开发并评估了一种用于冠状动脉血管和斑块分割的深度学习模型PlaqueViT 提出了一种基于3D vision transformer的深度学习模型,用于全自动冠状动脉斑块分割,性能与专家相当 NA 开发用于冠状动脉CT血管成像中血管和斑块分割的深度学习模型 冠状动脉CT血管成像数据 digital pathology cardiovascular disease coronary computed tomography angiography (CCTA) 3D vision transformer image SCAPIS数据集(开发集463例,测试集123例,观察者间研究65例,CAD检测数据集684例),林雪平大学医院数据集(外部验证28例)
4468 2025-07-07
Lateral connection convolutional neural networks for obstructive sleep apnea hypopnea classification
2025-Jul-06, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
research paper 提出了一种新型的卷积神经网络架构LCCNN,用于阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的分类 引入了侧向连接层以实现神经元的语义排列,提高了模型的可解释性,并通过竞争层以无监督方式更新滤波器 模型仍需要标记数据,而数据标记过程耗时、费力且成本高 提高阻塞性睡眠呼吸暂停低通气综合征(OSAHS)分类的准确性和模型可解释性 阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者数据 machine learning 阻塞性睡眠呼吸暂停低通气综合征 CNN LCCNN(Lateral Connection CNN) 生理信号数据 University College Dublin数据库(UCD)和Physionet Challenge数据库(PCD)
4469 2025-07-07
Quantifying features from X-ray images to assess early stage knee osteoarthritis
2025-Jul-05, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究提出了一种自动评估膝骨关节炎严重程度的系统,结合预训练的深度学习模型和图像处理技术,提取并量化关键的膝骨关节炎成像生物标志物 整合预训练DL模型与图像处理技术,自动检测和量化关节间隙狭窄和骨赘,无需昂贵的训练过程和大规模标注数据 系统在JSN检测、骨赘识别和KOA分类的准确率分别为88%、80%和73%,仍有提升空间 开发一种自动化系统,用于早期膝骨关节炎的严重程度评估 膝骨关节炎患者的X射线图像 数字病理学 膝骨关节炎 CLAHE对比度增强、DexiNed边缘提取、阈值降噪 预训练DL模型 X射线图像 NA
4470 2025-07-07
MRI-based detection of multiple sclerosis using an optimized attention-based deep learning framework
2025-Jul-05, Neurological research IF:1.7Q4
研究论文 本文提出了一种基于MRI的优化注意力深度学习框架2DRK-MSCAN,用于多发性硬化症的早期准确检测 结合了EfficientNetV2L骨干网络、U型编码器-解码器架构、深度扩散残差核和多尺度蛇形卷积注意力机制,提高了检测的准确性和鲁棒性 临床验证仍在进行中 开发并评估一种新型深度学习框架,用于MRI数据中多发性硬化症病变的早期准确检测 多发性硬化症病变 计算机视觉 多发性硬化症 MRI 2DRK-MSCAN(结合EfficientNetV2L、U型编码器-解码器、深度扩散残差核和多尺度蛇形卷积注意力机制) 图像 三个公开可用的基于MRI的脑肿瘤数据集
4471 2025-07-07
A self-supervised robotic system for autonomous contact-based spatial mapping of semiconductor properties
2025-Jul-04, Science advances IF:11.7Q1
研究论文 提出一种自监督机器人系统,用于自主接触式半导体特性的空间映射 通过自监督神经网络驱动的机器人系统,实现了高精度和高通量的接触式表征技术自动化 当前方法缺乏可靠的像素级精确定位,并且需要大量标记数据 提高接触式材料表征技术的测量质量、可靠性和通量 半导体光电导特性的空间映射 机器人技术 NA 自监督学习 神经网络 空间映射数据 3025个独特预测位点的钙钛矿薄膜成分梯度
4472 2025-07-07
Deep Learning Automated Measurements of Expanded Polystyrene Beads Size Using Low-Resolution Micrography
2025-Jul-04, Microscopy research and technique IF:2.0Q3
研究论文 本研究提出了一种基于深度学习的自动化方法,用于测量低分辨率显微图像中发泡聚苯乙烯珠粒的大小 利用深度学习模型自动测量低分辨率显微图像中的发泡聚苯乙烯珠粒大小,替代传统手动测量方法 研究仅针对两种密度的发泡聚苯乙烯泡沫(8.5和24 kg/m)进行了验证 开发一种可靠且精确的发泡聚苯乙烯珠粒尺寸自动测量方法 发泡聚苯乙烯泡沫的珠粒微观结构 计算机视觉 NA 显微成像 深度学习 图像 两种密度的发泡聚苯乙烯泡沫样品(8.5和24 kg/m)
4473 2025-07-07
The continuous evolution of biomolecular force fields
2025-Jul-03, Structure (London, England : 1993)
综述 本文综述了生物分子力场的最新进展,包括极化力场、机器学习势和粗粒化模型,并探讨了未来的发展方向 结合深度学习革命,提出了生物分子力场参数化的新机遇和方法 未具体提及实验验证或特定应用案例的局限性 提高生物分子力场的准确性和应用范围,以促进生物和治疗发现 生物分子力场 计算生物学 NA 深度学习 机器学习势、粗粒化模型 NA NA
4474 2025-07-07
Accurate prediction of synergistic drug combination using a multi-source information fusion framework
2025-Jul-03, BMC biology IF:4.4Q1
研究论文 提出了一种名为MultiSyn的多源信息融合框架,用于准确预测协同药物组合 利用属性图神经网络整合蛋白质-蛋白质相互作用网络与多组学数据,并通过异构图变换器学习分子结构的多视角表示 未明确提及具体样本量或实验范围的局限性 开发一种准确预测协同药物组合的计算方法,以支持复杂疾病治疗 药物组合及其协同效应 机器学习 复杂疾病 深度学习方法,包括图神经网络和异构图变换器 属性图神经网络、异构图变换器 多组学数据、蛋白质-蛋白质相互作用网络、药物分子结构 NA
4475 2025-07-07
Integration of metaheuristic based feature selection with ensemble representation learning models for privacy aware cyberattack detection in IoT environments
2025-Jul-02, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合元启发式特征选择与集成表示学习模型的隐私感知网络攻击检测技术,用于物联网环境 提出了一种自适应元启发式特征选择与集成学习模型(AMFS-ELPPCD),结合了AHHO特征选择、BiGRU、WAE和DBN等集成模型,并通过SGO优化超参数 实验仅在CICIDS-2017和NSLKDD两个数据集上进行验证,可能缺乏更广泛的数据集验证 提高物联网环境中的网络攻击检测准确性和隐私保护能力 物联网环境中的网络攻击数据 机器学习 NA Z-score归一化、AHHO特征选择、BiGRU、WAE、DBN、SGO超参数优化 集成学习模型(BiGRU、WAE、DBN) 网络攻击数据 CICIDS-2017和NSLKDD数据集
4476 2025-07-07
A deep learning model for early diagnosis of alzheimer's disease combined with 3D CNN and video Swin transformer
2025-Jul-02, Scientific reports IF:3.8Q1
research paper 提出了一种结合3D CNN和视频Swin Transformer的深度学习模型3D-CNN-VSwinFormer,用于阿尔茨海默病的早期诊断 模型结合了3D CNN和视频Swin Transformer,通过3D CBAM模块和单参与者3D MRI图像提取特征,避免了数据泄露和2D切片无法捕捉全局空间信息的问题 仅使用了ADNI数据集进行验证,可能在其他数据集上的泛化能力有待验证 提高阿尔茨海默病的早期诊断效率和准确性 阿尔茨海默病患者和认知正常个体 digital pathology geriatric disease 3D MRI 3D CNN, Video Swin Transformer 3D MRI image ADNI数据集中的参与者
4477 2025-07-07
Clinical decision support using pseudo-notes from multiple streams of EHR data
2025-Jul-02, NPJ digital medicine IF:12.4Q1
research paper 提出了一种名为MEME的深度学习框架,用于临床决策支持,通过将电子健康记录(EHR)转换为伪笔记,减少跨系统概念协调的需求 MEME框架首次将EHR数据转换为伪笔记,并利用自注意力机制学习多嵌入的上下文重要性,显著提升了临床决策支持的预测性能 由于文本序列化的特性,MEME在外部非标准化EHR数据库中的表现虽强,但可能仍受数据质量影响 开发一种能够处理异构EHR数据的深度学习框架,以支持临床决策 电子健康记录(EHR)数据 machine learning NA deep learning, self-attention mechanism MEME (Multiple Embedding Model for EHR) tabular EHR data, text 400,019次急诊科就诊
4478 2025-02-24
Increasing angular sampling for dedicated cardiac single photon emission computed tomography scanner: Implementation with deep learning and validation with human data
2025-Jul, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology IF:3.0Q2
NA NA NA NA NA NA NA NA NA NA NA NA
4479 2025-07-07
Impact of deep learning denoising on kinetic modelling for low-dose dynamic PET: application to single- and dual-tracer imaging protocols
2025-Jul, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 探讨深度学习去噪技术在低剂量动态PET成像中对动力学建模的影响,应用于单示踪剂和双示踪剂成像协议 首次将基于静态[18F]FDG PET图像训练的深度学习去噪模型应用于动态[18F]FDG和[18F]FGln PET成像,显著降低了剂量需求并保持了定量准确性 在极低剂量(4 MBq)下对乳腺病灶中[18F]FGln的定量准确性有所下降 提高低剂量动态PET成像的定量准确性 动态PET成像数据 医学影像分析 NA 深度学习去噪(DL-DN), 动态PET成像 深度学习框架 PET影像数据 16例[18F]FDG PET研究数据
4480 2025-07-07
Development and Validation of a Novel Deep Learning Model to Predict Pharmacologic Closure of Patent Ductus Arteriosus in Premature Infants
2025-Jul, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography IF:5.4Q1
research paper 开发并验证了一种新型深度学习模型,用于预测早产儿动脉导管未闭(PDA)的药物闭合可能性 首次将深度学习应用于预测早产儿PDA药物闭合效果,并开发了多模态CNN模型 样本量较小(174例),且为回顾性研究 预测早产儿PDA药物闭合效果 174名接受PDA药物治疗的早产儿 digital pathology cardiovascular disease echocardiography CNN image + clinical data 174名早产儿(1926个超声心动图片段)
回到顶部