深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24902 篇文献,本页显示第 4501 - 4520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4501 2025-04-23
Computer-Aided Technology for Bioactive Protein Design and Clinical Application
2025-Apr-22, Macromolecular bioscience IF:4.4Q1
review 本文综述了计算机辅助蛋白质设计(CAPD)技术及其在蛋白质治疗药物中的应用 整合了基于深度学习的预测和生成模型,显著提升了蛋白质药物的结合亲和力、特异性并降低了免疫原性 面临模型过拟合、稀有蛋白质家族数据有限以及需要高效实验验证等挑战 探讨CAPD技术在蛋白质工程和治疗药物开发中的应用及未来潜力 单克隆抗体、蛋白质药物、抗原和蛋白质聚合物等蛋白质治疗药物 machine learning NA deep learning-based predictions, generative models NA protein structure data NA
4502 2025-04-23
Deep learning unlocks the true potential of organ donation after circulatory death with accurate prediction of time-to-death
2025-Apr-19, Scientific reports IF:3.8Q1
研究论文 本研究利用深度学习技术预测循环死亡后器官捐献的时间,以提高器官捐献数量和质量 结合了循环神经网络和神经常微分方程的ODE-RNN模型,能够处理不规则采样的时间序列数据,准确预测死亡时间 模型仅在特定医院的患者数据上进行训练和验证,可能在其他地区或医院的应用效果有限 解决循环死亡后器官捐献时间不确定的问题,以提高器官捐献的成功率和移植后效果 重症监护病房(ICU)中接受终末拔管的患者 机器学习 器官移植 ODE-RNN RNN与神经常微分方程结合 临床观察时间序列数据 训练集3,238名患者(来自耶鲁纽黑文医院),验证集1,908名患者(来自康涅狄格州六家医院)
4503 2025-04-23
Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images
2025-Apr-19, Scientific reports IF:3.8Q1
research paper 提出了一种基于深度学习的混合启发式框架,用于通过热成像图像诊断乳腺癌 结合了Rock Hyraxes Dandelion Algorithm Optimization (RHDAO)进行阈值优化和权重优化,并采用了新实现的StackVRDNet深度学习结构 未提及具体样本量及数据来源的详细信息 提高乳腺癌早期诊断的准确性和效率 乳腺癌患者的热成像图像 digital pathology breast cancer thermography, deep learning StackVRDNet (结合VGG16, Resnet, DenseNet) image NA
4504 2025-04-23
Automated assessment of simulated laparoscopic surgical skill performance using deep learning
2025-Apr-19, Scientific reports IF:3.8Q1
research paper 该研究利用深度学习技术自动评估模拟腹腔镜手术技能表现 引入新收集的模拟腹腔镜手术性能数据集(LSPD),并采用3DCNN和弱监督方法分类外科医生的经验水平 数据集可能受限于模拟环境,未涉及真实手术场景 通过AI技术改进医疗保健和患者安全,特别是在腹腔镜手术技能评估方面 模拟腹腔镜手术视频数据 computer vision NA 3DCNN 3DCNN video 涉及不同技能水平(新手、实习生、专家)的外科医生模拟手术视频
4505 2025-04-23
A hybrid approach combining deep learning and signal processing for bearing fault diagnosis under imbalanced samples and multiple operating conditions
2025-Apr-19, Scientific reports IF:3.8Q1
研究论文 提出了一种结合深度学习和信号处理的混合方法,用于在样本不平衡和多种操作条件下进行轴承故障诊断 结合生成对抗网络(GANs)、迁移学习、小波变换时频表示、非对称卷积网络和多头注意力机制(MAC-MHA),提升轴承故障诊断性能 NA 提升轴承故障诊断性能 轴承振动信号 机器学习 NA GANs, 迁移学习, 小波变换, MAC-MHA 非对称卷积网络, 多头注意力机制 振动信号 PADERBORN和CWRU数据集
4506 2025-04-23
Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
2025-Apr-16, Scientific reports IF:3.8Q1
研究论文 探讨了多站点与单站点训练数据样本量、跨站点域适应以及数据来源和特征对基于深度学习的脑梗死MRI分割算法性能的影响 研究了多站点数据训练和域适应对深度学习算法在脑梗死分割中的性能提升,特别是小样本域适应可使算法性能接近大样本训练的效果 在脑干或超急性期(<3小时)梗死分割方面表现相对较差 提高脑梗死MRI自动分割算法的性能和泛化能力 脑梗死病灶 医学影像分析 脑梗死 MRI 3D U-net 扩散加权图像(DWI) 10820张标注DWI(来自10家大学医院),内部测试2159张,外部验证3个独立数据集(n=2777,50,250)
4507 2025-04-23
Artificial intelligence-driven cybersecurity system for internet of things using self-attention deep learning and metaheuristic algorithms
2025-Apr-16, Scientific reports IF:3.8Q1
研究论文 提出了一种基于自注意力深度学习和元启发式算法的人工智能驱动的物联网网络安全系统 结合了改进的金枪鱼群优化算法(ITSO)和带有自注意力的双向长短期记忆网络(BiLSTM-SA),并利用饥饿游戏搜索(HGS)技术进行参数选择 未提及系统在实时性和计算资源消耗方面的表现 增强物联网网络中的网络安全防护能力 物联网网络中的网络安全威胁 机器学习 NA 深度学习, 元启发式算法 BiLSTM-SA, ITSO, HGS 网络安全数据 ToN-IoT和Edge-IIoT数据集
4508 2025-04-23
Examining the development, effectiveness, and limitations of computer-aided diagnosis systems for retained surgical items detection: a systematic review
2025-Apr-10, Ergonomics IF:2.0Q3
系统综述 本文系统综述了计算机辅助诊断系统在检测手术遗留物品中的发展、有效性和局限性 总结了计算机辅助检测系统的特性,评估了其发展、有效性和局限性,并提出了改进机会 大多数研究使用合成的RSI放射照片开发CAD系统,这引发了普遍性问题,且深度学习为基础的CAD系统未纳入可解释的人工智能技术以确保决策透明度 评估计算机辅助诊断系统在检测手术遗留物品中的发展、有效性和局限性 计算机辅助诊断系统 数字病理 NA 计算机辅助检测(CAD) 深度学习 放射照片 11项研究
4509 2025-04-23
Automated segmentation of dental restorations using deep learning: exploring data augmentation techniques
2025-Apr, Oral radiology IF:1.6Q3
research paper 该研究利用深度学习模型自动分割全景牙科X光片中的种植体、假体和填充物,并探索数据增强技术对模型性能的影响 研究了9种不同的深度学习分割模型和8种数据增强技术对牙科修复体分割性能的影响 未提及模型在临床环境中的实际应用效果 提高牙科X光片中修复体的自动分割精度 牙科全景X光片中的种植体、假体和填充物 digital pathology NA 深度学习 9种不同的深度学习分割模型 image 未明确说明样本数量
4510 2025-04-23
Evaluation of the mandibular canal and the third mandibular molar relationship by CBCT with a deep learning approach
2025-Apr, Oral radiology IF:1.6Q3
研究论文 本研究利用CBCT和深度学习技术评估下颌管与第三磨牙的关系,并自动分割下颌阻生第三磨牙、下颌管、颏孔和下颌孔 采用nnU-NetV2架构开发深度学习模型,自动分割和评估下颌管与第三磨牙的关系,为诊断和手术规划提供支持 样本量较小(300例),且为回顾性研究,可能存在选择偏倚 评估下颌管与第三磨牙的关系,提高手术规划和并发症预测的准确性 下颌管(MC)和下颌第三磨牙(MM3) 数字病理 牙科疾病 CBCT nnU-NetV2 图像 300例患者的CBCT数据
4511 2025-04-23
Evaluation of the effectiveness of panoramic radiography in impacted mandibular third molars on deep learning models developed with findings obtained with cone beam computed tomography
2025-Apr, Oral radiology IF:1.6Q3
研究论文 本研究评估了基于CBCT训练的深度学习模型在PR图像中识别下颌第三磨牙与下颌管接触关系和位置的有效性 首次比较了不同深度学习架构在两种感兴趣区域上解决四个问题的性能 样本量相对有限(546颗牙齿),且仅评估了三种深度学习架构 评估深度学习模型在口腔影像学中识别牙齿与神经管关系的准确性 290名患者的546颗阻生下颌第三磨牙 数字病理 口腔疾病 深度学习,锥形束计算机断层扫描(CBCT),全景放射摄影(PR) SqueezeNet, GoogLeNet, Inception-v3 医学影像 290名患者的546颗牙齿
4512 2025-04-23
Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study
2025-Apr, La Radiologia medica
研究论文 开发并验证了一种基于深度学习的MVIT-MLKA模型,用于准确分类胰腺病变 提出了一种新型混合模型MVIT-MLKA,结合了CNN和Transformer架构,用于胰腺病变分类,并在多中心数据上验证了其性能 研究为回顾性设计,可能存在选择偏差 开发并验证一种深度学习模型,用于准确区分良性和恶性胰腺病变 胰腺病变患者 数字病理 胰腺癌 CT成像 MVIT-MLKA(结合CNN和Transformer的混合模型) 图像 864名患者(来自三个医疗中心)
4513 2025-04-23
Physical Considerations in Memory and Information Storage
2025-Apr, Annual review of physical chemistry IF:11.7Q1
review 本文从能量学、动力学和统计力学的角度回顾了信息存储和检索的原理 探讨了Hopfield联想记忆模型的物理实现及其与深度学习中的能量基神经网络的联系 未提及具体实验验证或实际应用案例 理解稳健信息处理的物理原理 信息存储和检索的物理系统 machine learning NA NA Hopfield model, energy-based neural networks NA NA
4514 2025-04-23
Deep learning-based design and screening of benzimidazole-pyrazine derivatives as adenosine A2B receptor antagonists
2025-Apr, Journal of biomolecular structure & dynamics IF:2.7Q2
research paper 本研究利用深度学习生成模型和多层虚拟筛选技术,设计并筛选苯并咪唑-吡嗪衍生物作为潜在的腺苷A2B受体选择性拮抗剂 开发了一种基于支架的协议,结合深度生成模型和多层虚拟筛选技术,用于设计具有选择性的A2B受体拮抗剂 未提及实验验证结果,仅基于计算分析 设计并筛选具有选择性的腺苷A2B受体拮抗剂,用于癌症免疫治疗 苯并咪唑-吡嗪衍生物 machine learning cancer deep generative model, multilayer virtual screening generative model chemical compounds NA
4515 2025-04-23
An energy-aware heart disease prediction system using ESMO and optimal deep learning model for healthcare monitoring in IoT
2025-Apr, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 提出了一种基于增强蜘蛛猴优化(ESMO)和权重优化神经网络的能量感知心脏病预测系统,用于物联网(IoT)医疗环境 结合ESMO和EAWO-DNN模型,优化能量消耗并提高心脏病预测准确率 未提及具体样本量或数据集来源,可能影响模型泛化能力 开发高效的心脏病预测系统以改善物联网医疗监控 心脏病患者数据 机器学习 心血管疾病 ESMO优化算法、EAWO-DNN模型 DNN 医疗数据 NA
4516 2025-04-23
Revolutionizing Breast Cancer Care: AI-Enhanced Diagnosis and Patient History
2025-Apr, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 本研究提出了一种结合人工智能和机器学习的方法,用于提高乳腺癌诊断的准确性和简化医疗历史记录 整合了SVM、KNN和模糊逻辑三种算法,并利用深度学习模型提高预测准确性,同时采用AI驱动的动态问诊系统 未提及具体样本量或临床验证结果 提升乳腺癌诊断准确性和医疗历史记录效率 乳腺癌患者 数字病理学 乳腺癌 机器学习、深度学习 SVM、KNN、Fuzzy Logic、GPT-3.5 医疗历史数据 NA
4517 2025-04-23
A pooling convolution model for multi-classification of ECG and PCG signals
2025-Apr, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
research paper 提出了一种用于ECG和PCG信号多分类的池化卷积模型 设计了一系列简单有效的池化卷积模型,包括堆叠块(MCM)及其变体,以及残差块(REC),能够处理不同采样率的ECG和PCG数据 未明确提及模型的局限性 提高心血管疾病检测的效率 ECG和PCG信号 machine learning cardiovascular disease deep learning CNN signal 多个ECG和PCG数据集,包括一个同步的ECG-PCG数据集,分为七个不同疲劳等级
4518 2025-04-23
C2BNet: A Deep Learning Architecture With Coupled Composite Backbone for Parasitic Egg Detection in Microscopic Images
2025-Apr, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 提出了一种名为C2BNet的深度学习架构,用于在显微图像中检测寄生虫卵 C2BNet采用双路径结构的骨干网络,利用模型异质性从不同角度学习目标特征,并提出了一种新的特征组合方式以增强特征表示能力 NA 提高在显微图像中检测寄生虫卵的模型性能 寄生虫卵 computer vision intestinal parasitic infection deep learning C2BNet 2D microscopic images Chula-ParasiteEgg-11 dataset
4519 2025-04-23
SeqNovo: De Novo Peptide Sequencing Prediction in IoMT via Seq2Seq
2025-Apr, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 提出了一种名为SeqNovo的新模型,用于IoMT中的de novo肽段测序预测,该模型结合了Seq2Seq结构、多层感知机(MLP)的高度非线性特性以及注意力机制捕捉长距离依赖关系的能力 SeqNovo模型结合了Seq2Seq结构、MLP和注意力机制,提高了肽段测序预测的准确性和可解释性,并增强了捕捉长距离依赖关系的能力 论文未明确提及具体局限性 解决当前深度学习模型在肽段测序预测中可解释性差和长距离依赖捕捉能力不足的问题 肽段测序预测 machine learning NA de novo peptide sequencing Seq2Seq with MLP and attention mechanism sequence data NA
4520 2025-04-23
Development and validation of a semi-automatic radiomics ensemble model for preoperative evaluation of breast masses in mammotome-assisted minimally invasive resection
2025-Mar-31, Gland surgery IF:1.5Q3
研究论文 开发并验证了一种基于超声的半自动分割集成模型,用于在乳腺微创旋切术前评估乳腺肿块 提出了一种基于半自动分割的集成学习模型,减少了手动勾画的主观性和时间消耗,提高了术前评估的准确性 研究为回顾性分析,可能存在选择偏倚;模型性能在测试队列中的AUC相对训练队列有所下降 提高乳腺肿块术前评估的准确性,指导个体化治疗策略 773例患者的术前超声图像(543例肿瘤,230例非肿瘤) 数字病理 乳腺癌 超声成像,深度迁移学习(DTL) DeepLabv3_ResNet50, FCN_ResNet50, 集成模型 超声图像 773例患者(543例肿瘤,230例非肿瘤)
回到顶部