深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24288 篇文献,本页显示第 4541 - 4560 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4541 2025-03-27
Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation
2024 Sep-Oct, Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
研究论文 使用序列深度学习分割技术评估儿童期阿托品治疗对成人脉络膜厚度的影响 首次使用序列深度学习方法测量成人脉络膜厚度,并探讨儿童期阿托品治疗的长期影响 研究样本量有限,且未考虑其他可能影响脉络膜厚度的因素 评估儿童期阿托品治疗对成人脉络膜厚度的长期影响 接受过儿童期阿托品治疗的成人 数字病理学 近视 扫频光学相干断层扫描(SS-OCT) 序列深度学习 图像 422只眼睛(94只未接受阿托品治疗,328只接受过治疗)
4542 2025-03-27
Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images
2024-Aug-30, Cell structure and function IF:2.0Q4
研究论文 本文提出了一种基于深度学习的亚细胞器在高分辨率相位对比图像中的分割方法 利用荧光标记作为真实掩码的起源,开发了机器学习分割模型,实现了无标记活细胞中亚细胞器的精确分割 NA 开发一种精确分割亚细胞器的方法,以研究无标记活细胞中的细胞动力学 亚细胞器 计算机视觉 NA 深度学习 NA 图像 NA
4543 2025-03-27
Opportunistic Screening of Chronic Liver Disease with Deep Learning Enhanced Echocardiography
2024-Jun-14, medRxiv : the preprint server for health sciences
research paper 开发并评估了一种基于深度学习的心动图视频算法,用于慢性肝病的机遇性筛查 利用深度学习增强心动图视频分析,实现慢性肝病的自动化筛查 研究基于回顾性数据,可能影响模型的泛化能力 开发一种自动化工具,通过心动图视频筛查慢性肝病 接受心动图和腹部影像检查的成年患者 digital pathology chronic liver disease deep learning computer vision pipeline CNN video 1,596,640 心动图视频(来自 24,276 名患者)
4544 2025-03-27
Predicting Progression From Mild Cognitive Impairment to Alzheimer's Dementia With Adversarial Attacks
2024-06, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种利用对抗攻击预测轻度认知障碍(MCI)向阿尔茨海默病(AD)转化的简单框架 通过对抗攻击找到输入空间中的对抗进展方向,利用决策边界的距离预测患者下一次就诊的诊断结果 阿尔茨海默病研究中的可用数据集规模不足以从患者数据中学习复杂模型 预测MCI向AD的转化并辅助患者分型 轻度认知障碍(MCI)患者 机器学习 阿尔茨海默病 对抗攻击 浅层神经网络 患者数据 两个公开可用的阿尔茨海默病研究数据集
4545 2025-03-27
Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network
2024, Frontiers in radiology
研究论文 本文开发了一种基于深度学习的全自动分割方法,用于颅内狭窄血管的4D流动MRI数据分割,以提高数据分析的重复性和鲁棒性 首次应用3D U-Net进行颅内狭窄血管的全自动分割,显著提高了分割的准确性和效率 未来需要更多颅内动脉粥样硬化疾病(ICAD)的分割数据以及其他颅内血管病变的数据来提高模型的性能和泛化能力 开发一种准确、全自动的分割方法,用于颅内狭窄血管的4D流动MRI数据分割,以改善血流动力学的定量评估 颅内动脉粥样硬化疾病(ICAD)患者和健康对照者的4D流动MRI数据 数字病理 颅内动脉粥样硬化疾病 4D流动MRI 3D U-Net MRI图像 154例双VENC 4D流动MRI扫描(68例ICAD患者,86例健康对照)
4546 2025-03-27
Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay
2023-12, Small (Weinheim an der Bergstrasse, Germany)
研究论文 本文展示了一种基于深度学习的多重即时检测传感器,用于同时量化急性心脏损伤的三种生物标志物 结合纸基荧光垂直流动检测(fxVFA)与低成本移动阅读器,通过训练神经网络在15分钟内完成检测,具有高灵敏度和低交叉反应性 仅验证了46个独立激活的检测卡,样本量相对较小 开发一种低成本、便携式的即时检测平台,用于急性心脏损伤的诊断 人类血清样本中的三种心脏生物标志物(肌红蛋白、肌酸激酶-MB和心型脂肪酸结合蛋白) 数字病理 心血管疾病 纸基荧光垂直流动检测(fxVFA) 神经网络 荧光信号 46个独立激活的检测卡,每个患者使用50µL血清样本
4547 2025-03-27
Embryonic cranial cartilage defects in the Fgfr3Y367C /+ mouse model of achondroplasia
2023-Sep-25, Anatomical record (Hoboken, N.J. : 2007)
研究论文 本研究利用Fgfr3Y367C/+小鼠模型探讨了软骨发育不全症胚胎期颅骨和Meckel软骨的缺陷 首次在胚胎期研究了Fgfr3突变对颅骨和咽部软骨的直接影响,并开发了基于深度学习的3D分割模型 研究仅使用了小鼠模型,结果在人类中的适用性需要进一步验证 探究软骨发育不全症中FGFR3突变对胚胎期软骨发育的影响 Fgfr3Y367C/+突变小鼠的胚胎颅骨和Meckel软骨 数字病理学 软骨发育不全症 microCT成像和深度学习3D分割 深度学习3D分割模型 3D图像 E14.5和E16.5胚胎期Fgfr3突变小鼠及其未受影响同窝仔
4548 2025-03-27
Sub-second photon dose prediction via transformer neural networks
2023-May, Medical physics IF:3.2Q1
研究论文 提出了一种结合Transformer和卷积层的深度学习算法iDoTA,用于快速预测光子束剂量分布 利用Transformer和卷积层的协同作用,实现了毫秒级的光子束剂量分布预测,为在线和实时自适应治疗提供了新方法 研究仅基于1700个光束剂量分布的数据集,可能在不同临床场景中的泛化能力有待验证 开发一种快速且准确的光子束剂量分布预测算法,以支持在线和实时自适应治疗 光子束剂量分布预测 机器学习 前列腺癌、肺癌、头颈癌 深度学习 Transformer与CNN结合 3D CT图像 1700个光束剂量分布,来自11个临床VMAT计划(每个计划194-354个光束)
4549 2025-03-27
MULTITASK LEARNING FOR IMPROVED LATE MECHANICAL ACTIVATION DETECTION OF HEART FROM CINE DENSE MRI
2023-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种多任务深度学习框架,用于同时估计心脏晚期机械激活(LMA)量并分类无疤痕的LMA区域,以提高心脏再同步治疗(CRT)的准确性 引入了辅助LMA区域分类子网络,提高了模型对心肌疤痕引起的复杂模式的鲁棒性,显著消除了LMA检测中的负面影响,并进一步改善了疤痕分类性能 NA 提高心脏晚期机械激活(LMA)区域的检测准确性,特别是在存在心肌疤痕的情况下 心脏的晚期机械激活(LMA)区域 医学影像分析 心血管疾病 cine位移编码与受激回波(DENSE)磁共振成像(MRI) 多任务深度学习框架 心脏MR图像 NA
4550 2025-03-27
Multi-step short-term P M 2.5  forecasting for enactment of proactive environmental regulation strategies
2022-04-21, Environmental monitoring and assessment IF:2.9Q3
研究论文 该研究探讨了使用LSTM模型预测PM2.5浓度的多步短期预测方法,以支持主动环境监管策略的制定 采用贝叶斯优化技术调整LSTM模型的超参数和权重初始化策略,提高了PM2.5浓度预测的准确性 预测误差随时间步长增加而逐渐增大,24小时预测的RMSE达到0.7290 量化并预测颗粒物浓度,以支持环境监管和早期预警系统的建立 北京(中国)和旁遮普(巴基斯坦)两个高污染地区的PM2.5浓度数据 机器学习 心血管疾病 LSTM模型,贝叶斯优化 LSTM 时间序列数据 来自北京和旁遮普两个地区的数据
4551 2025-03-26
Artificial intelligence driven plaque characterization and functional assessment from CCTA using OCT-based automation: A prospective study
2025-Jun-01, International journal of cardiology IF:3.2Q2
研究论文 开发并验证了一种基于AI的模型,利用CCTA和OCT图像自动分析斑块特征和冠状动脉功能 首次将AI模型与OCT图像结合,用于自动分析斑块特征和冠状动脉功能,并展示了与OCT分析结果的高度一致性 样本量相对较小(100名患者),且所有患者均来自同一机构,可能限制结果的普遍性 开发并验证一种AI模型,用于自动分析冠状动脉斑块特征和功能评估 100名接受侵入性冠状动脉造影、OCT和CCTA检查的患者 数字病理学 心血管疾病 CCTA, OCT CNN 图像 100名患者,21,471张断层图像
4552 2025-03-26
Artificial Intelligence Models to Identify Patients with High Probability of Glaucoma Using Electronic Health Records
2025 May-Jun, Ophthalmology science IF:3.2Q1
研究论文 本研究开发了人工智能模型,利用电子健康记录(EHRs)中的数据识别高概率青光眼患者,无需眼科影像或临床数据 利用非眼科的结构化EHR数据(如人口统计、实验室结果、测量、药物和诊断)开发AI模型,无需专用眼科影像或临床数据即可识别青光眼高风险患者 需要进一步研究受保护类别特征(如种族/民族)对模型性能和公平性的影响 开发AI模型以早期识别青光眼高风险患者 64,735名18岁以上、在EHR中有至少两次眼相关诊断记录的患者 机器学习 青光眼 机器学习与深度学习 惩罚逻辑回归、XGBoost、1D-CNN和堆叠自编码器 结构化电子健康记录数据 64,735名患者,其中7,268名(11.22%)有青光眼诊断
4553 2025-03-26
Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 提出了一种弱监督多模态对比学习框架(WSMCL),用于预测乳腺癌中的HER2评分 首次将多模态(H&E和IHC)联合学习与弱监督对比学习相结合,通过多模态注意力对比学习模块(MACL)实现不同模态特征的语义对齐 未提及具体样本量或数据集的多样性限制 提高乳腺癌HER2评分的预测准确性 乳腺癌全切片图像(WSI)中的HER2评分 数字病理学 乳腺癌 多模态对比学习、多头自注意力(MHSA) WSMCL(弱监督多模态对比学习框架) 全切片图像(WSI) NA
4554 2025-03-26
A feasibility study of lung tumor segmentation on kilo-voltage radiographic images with transfer learning: Toward tumor motion tracking in radiotherapy
2025-Apr, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
研究论文 本研究探讨了在千伏X射线放射图像上通过迁移学习进行肺肿瘤分割的可行性,旨在实现放疗中的无标记肿瘤运动追踪 提出了一种结合迁移学习和深度分割网络陪审团委员会(TL-DSN-JC)的新算法,显著提升了肿瘤分割的准确性 研究仅基于80名肺癌患者的1150张放射图像,样本量和多样性可能有限 开发一种无标记的肺肿瘤运动追踪方法,以提高放疗的精确性 肺肿瘤在千伏X射线放射图像上的分割 数字病理 肺癌 迁移学习,深度学习 VGG-16/19,TL-DSN-JC 图像 80名肺癌患者的1150张放射图像
4555 2025-03-26
Artificial intelligence-driven forecasting and shift optimization for pediatric emergency department crowding
2025-Apr, JAMIA open IF:2.5Q3
研究论文 本研究开发并评估了一个基于人工智能(AI)的系统,用于预测儿科急诊科(PED)的拥挤情况,并通过机器学习操作(MLOps)优化医生班次安排 结合先进的深度学习模型与MLOps架构,实现持续模型更新,提升预测准确性,并在COVID-19等事件导致的数据漂移中表现出韧性 单中心设计和固定的人员配置模型,需多中心验证和在动态人员配置环境中的实施 预测儿科急诊科拥挤情况并优化医生班次安排 352,843例儿科急诊科入院数据 机器学习 儿科急诊 机器学习操作(MLOps) Temporal Convolutional Network, Time-series Dense Encoder, Reversible Instance Normalization, Neural High-order Time Series model, Neural Basis Expansion Analysis 时间序列数据 352,843例儿科急诊科入院数据
4556 2025-03-26
Deep-Learning-Assisted Understanding of the Self-Assembly of Miktoarm Star Block Copolymers
2025-Mar-25, ACS nano IF:15.8Q1
research paper 该研究应用深度学习技术解析了AB型星形嵌段共聚物PEO-PS在蒸发诱导自组装系统中的相行为 首次将深度学习技术应用于复杂拓扑结构嵌段共聚物的自组装行为研究,成功预测了三维合成场图并揭示了参数与结构之间的关联 研究仅针对特定类型的星形嵌段共聚物(PEO-PS),结论可能不适用于其他拓扑结构的共聚物 探索复杂拓扑结构嵌段共聚物的自组装行为规律 AB型星形嵌段共聚物PEO-PS soft matter science NA deep learning neural network experimental data 包含两种聚合物特性和三种合成条件参数的数据集
4557 2025-03-26
From 1-D to 3-D: LIBS Pseudohyperspectral Data Cube Deep Learning Mechanism Used in Nuclear Metal Materials Classification
2025-Mar-25, Analytical chemistry IF:6.7Q1
研究论文 提出一种名为LIBS伪高光谱数据立方体的新光谱数据机制,将1-D LIBS光谱转化为3-D数据立方体,以提高核金属材料分类的准确性 引入两个额外维度捕捉光谱变化信息,使LIBS系统在处理不稳定光谱时更加稳健,并充分利用深度学习算法 未明确提及具体局限性 提高核电站中不稳定光谱的分类准确性 核金属材料 机器学习 NA LIBS(激光诱导击穿光谱) 深度学习算法(含注意力机制) 光谱数据 NA
4558 2025-03-26
Molecular insights fast-tracked: AI in biosynthetic pathway research
2025-Mar-25, Natural product reports IF:10.2Q1
review 本文探讨了人工智能(AI)在生物合成途径研究中的潜力,以加速分子洞察并应对相关挑战 综述了AI技术在生物合成途径研究中的多种应用,包括机器学习(ML)、深度学习(DL)、自然语言处理、网络分析和数据挖掘,并讨论了AI在途径发现、设计和优化三个主要领域的应用 讨论了当前AI在生物合成途径研究中的局限性,并强调了AI与实验方法协同的重要性 探索AI在生物合成途径研究中的应用,以加速分子洞察并开发具有药理学、农业和生物技术应用的生物活性天然产物 生物合成途径研究 machine learning NA 机器学习(ML)、深度学习(DL)、自然语言处理、网络分析、数据挖掘 NA omics数据 NA
4559 2025-03-26
Leveraging Deep Learning for Urban Health Insights: Transforming Street-Level Imagery into Cardiovascular Risk Indicators
2025-Mar-25, European journal of preventive cardiology IF:8.4Q1
NA NA NA NA NA NA NA NA NA NA NA NA
4560 2025-03-26
Quantification and classification of lumbar disc herniation on axial magnetic resonance images using deep learning models
2025-Mar-24, La Radiologia medica
研究论文 使用深度学习模型对腰椎间盘突出症(LDH)在轴向T2加权MRI图像上进行快速准确的自动量化和分类 应用YOLOv8系列模型(包括目标检测、分割和关键点检测)进行LDH的自动识别和分类,实现了高精度的量化与分类 研究仅基于回顾性数据,未涉及前瞻性验证 开发一个自动化辅助诊断模型,用于腰椎间盘突出症的检测和分类 腰椎间盘突出症(LDH)患者 数字病理 腰椎间盘突出症 深度学习 YOLOv8(包括目标检测、分割和关键点检测模型) MRI图像 2500名患者(训练集2120名患者,25554张图像;内部测试集80名患者,784张图像;外部测试集300名患者,3285张图像)
回到顶部