本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4621 | 2025-03-19 |
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1510905
PMID:40083475
|
研究论文 | 本文比较了使用LiDAR技术和深度学习模型进行急性烧伤伤口3D和2D面积测量的差异 | 开发了结合深度学习模型和LiDAR技术的应用B.E.N.,用于烧伤伤口的3D和2D测量,并验证了3D分割结果与实际烧伤伤口大小的匹配度 | 研究中未明确提及样本的具体数量,且仅针对烧伤伤口进行了研究,未涉及其他类型的伤口 | 比较3D和2D测量烧伤伤口面积的准确性,并探讨肢体曲率对3D/2D面积比的影响 | 烧伤伤口 | 计算机视觉 | 烧伤 | LiDAR技术 | 深度学习模型 | 图像 | NA |
4622 | 2025-03-19 |
Machine and deep learning to predict viral fusion peptides
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.011
PMID:40083606
|
研究论文 | 本文探讨了使用机器学习和深度学习模型预测病毒融合肽的方法 | 采用基于机器学习和深度学习的方法,特别是使用最先进的氨基酸标记分类转换器模型,有效预测病毒融合肽的位置 | 对于实验数据有限的病毒,预测结果可能存在不确定性 | 开发能够预测病毒融合蛋白序列中融合肽段的生物信息学工具 | 病毒融合蛋白及其融合肽段 | 自然语言处理 | NA | 机器学习和深度学习 | 转换器模型 | 蛋白质序列 | 超过50种模型和特征的组合 |
4623 | 2025-03-19 |
Explainable AI in medical imaging: an interpretable and collaborative federated learning model for brain tumor classification
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1535478
PMID:40083877
|
研究论文 | 本文提出了一种可解释的协作联邦学习模型(CFLM),用于脑肿瘤分类,结合了可解释的人工智能(XAI)技术 | 结合了联邦学习(FL)和GoogLeNet架构,解决了传统集中式模型在数据多样性和模型透明度方面的挑战 | 研究中仅使用了10个客户端和50轮通信,样本量和训练轮次可能不足以全面验证模型的泛化能力 | 提高脑肿瘤分类的准确性和模型的可解释性,以支持临床决策 | 脑肿瘤(包括胶质瘤、脑膜瘤、无肿瘤和垂体瘤) | 计算机视觉 | 脑肿瘤 | 深度学习(DL)、联邦学习(FL)、Grad-CAM、显著性图可视化 | GoogLeNet | MRI图像 | 10个客户端,每个客户端使用分散的本地数据集进行训练 |
4624 | 2025-03-19 |
Effect of natural and synthetic noise data augmentation on physical action classification by brain-computer interface and deep learning
2025, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2025.1521805
PMID:40083893
|
研究论文 | 本研究探讨了自然和合成噪声数据增强对通过脑机接口和深度学习进行物理动作分类的影响 | 提出了两种噪声数据增强方法(自然和合成),并比较了它们对分类性能的影响,特别是在资源有限的设备上应用的潜力 | 研究中使用的深度神经网络相对简单,可能限制了模型的复杂性和性能 | 研究环境噪声对脑机接口中物理动作分类的影响 | 脑电图(EEG)信号和物理动作分类 | 脑机接口 | NA | 噪声数据增强(NDA) | 全连接网络(FCN)和卷积神经网络(CNN) | 脑电图(EEG)信号 | 使用grasp-and-lift(GAL)数据集中的手指-手掌-手操作数据 |
4625 | 2025-03-19 |
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues
2025, BME frontiers
IF:5.0Q1
DOI:10.34133/bmef.0110
PMID:40084126
|
研究论文 | 本文开发了一种基于图的三维空间基因邻域网络嵌入方法(3D-spaGNN-E),用于发现亚细胞基因邻近关系并识别细胞间通讯中的关键亚细胞模式 | 结合了3D成像空间转录组学和基于图的深度学习,首次在三维空间中解析亚细胞基因邻近关系 | 数据复杂性增加,需要新的分析方法来处理三维空间数据 | 研究细胞间通讯中的亚细胞基因邻近关系 | 间充质干细胞(MSCs)、外周血单核细胞(PBMC)、小鼠下丘脑和皮质的星形胶质细胞与神经元 | 数字病理学 | NA | 3D成像空间转录组学、MERFISH | 图自编码器 | 3D图像、基因表达数据 | 间充质干细胞培养物、MSC-PBMC共培养系统、小鼠下丘脑和皮质组织 |
4626 | 2025-03-19 |
Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma
2025, International journal of medical sciences
IF:3.2Q1
DOI:10.7150/ijms.107694
PMID:40084259
|
研究论文 | 本研究通过多组学和单细胞分析,开发了基于机器学习的嘧啶代谢相关特征(PMRS),并评估其在肺腺癌(LUAD)患者预后和治疗中的潜在价值 | 首次结合多组学和单细胞分析,利用机器学习算法开发了PMRS模型,揭示了其在肺腺癌患者预后和治疗中的新见解 | 研究主要基于生物信息学分析,实验验证部分仅限于LYPD3的功能验证,未全面覆盖PMRS模型中所有关键因子 | 探索嘧啶代谢在肺腺癌患者预后和治疗中的意义,并开发相关预测模型 | 肺腺癌(LUAD)患者及其细胞系 | 机器学习 | 肺腺癌 | 多组学分析、单细胞分析 | 随机生存森林(Random Survival Forest) | 基因组数据、单细胞数据 | 肺腺癌患者及其细胞系 |
4627 | 2025-03-19 |
Patho-Net: enhancing breast cancer classification using deep learning and explainable artificial intelligence
2025, American journal of cancer research
IF:3.6Q2
DOI:10.62347/XKFN1793
PMID:40084355
|
研究论文 | 本文提出了一种名为Patho-Net的深度学习模型,用于乳腺癌分类,解决了可扩展性、固定大小输入图像和有限数据集上的过拟合问题 | Patho-Net模型结合了GRU网络和U-Net架构,无需调整图像大小,提高了计算效率,并通过XAI提供了模型预测的清晰视觉解释 | NA | 提高乳腺癌分类的准确性和可解释性 | 乳腺癌组织病理学图像 | 数字病理学 | 乳腺癌 | 深度学习,可解释人工智能(XAI) | U-Net,GRU | 图像 | 100X BreakHis数据集 |
4628 | 2025-03-19 |
Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics
2025 Jan-Dec, American journal of Alzheimer's disease and other dementias
DOI:10.1177/15333175251325091
PMID:40087144
|
研究论文 | 本研究利用深度学习和放射组学技术,自动检测白质高信号患者的认知障碍 | 结合深度学习的VB-Nets卷积神经网络和放射组学特征,开发了一种新的认知障碍检测方法 | 样本量相对较小,且仅来自两家医院,可能影响模型的泛化能力 | 开发一种可靠的工具,用于早期诊断白质高信号患者的认知障碍 | 白质高信号患者 | 数字病理学 | 老年疾病 | 深度学习,放射组学 | VB-Nets卷积神经网络,随机森林模型 | 医学影像 | 108名患者(79名来自医院1,29名来自医院2) |
4629 | 2025-03-19 |
BMWP: the first Bengali math word problems dataset for operation prediction and solving
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00243-7
PMID:40092969
|
研究论文 | 本文介绍了首个孟加拉语数学应用题数据集BMWP,用于操作预测和解题,并探讨了使用深度学习技术进行孟加拉语应用题操作预测的方法 | 首次创建了孟加拉语数学应用题数据集BMWP,填补了低资源语言在这一领域的空白 | 数据集仅包含8653个应用题,可能不足以覆盖所有复杂情况 | 评估和提升AI模型在解决低资源语言数学应用题方面的能力 | 孟加拉语数学应用题 | 自然语言处理 | NA | 深度学习 | 深度学习神经网络架构 | 文本 | 8653个孟加拉语数学应用题 |
4630 | 2025-03-19 |
A review of machine learning and deep learning for Parkinson's disease detection
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00241-9
PMID:40092968
|
review | 本文综述了机器学习和深度学习在帕金森病检测和进展监测中的应用 | 通过整合多种数据源,提供了新的视角,并特别展示了音频分析和步态分析在早期症状检测和疾病进展监测中的有效性 | 需要大量且多样化的数据集,数据隐私问题,以及医疗数据质量的挑战,开发可解释的AI以确保临床医生能够信任和理解ML和DL模型 | 提高帕金森病诊断的准确性 | 帕金森病患者 | machine learning | geriatric disease | NA | SVM, RF, CNN | audio recordings, gait analysis, medical imaging | NA |
4631 | 2025-03-19 |
OnmiMHC: a machine learning solution for UCEC tumor vaccine development through enhanced peptide-MHC binding prediction
2025, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2025.1550252
PMID:40092998
|
研究论文 | 本研究开发了一种名为OnmiMHC的机器学习框架,用于预测MHC I类和II类分子对抗原肽的呈递,并通过大规模质谱数据和其他相关数据类型的整合,展示了其在预测肽-MHC结合亲和力方面的优越性 | 提出了基于深度学习的预测模型OnmiMHC,其在MHC-I和MHC-II任务中的表现优于现有方法,特别是在预测特定癌症类型的新抗原方面取得了显著成果 | NA | 开发一种新的机器学习框架,用于预测MHC I类和II类分子对抗原肽的呈递,以促进肿瘤疫苗的开发 | MHC I类和II类分子,以及它们与抗原肽的结合 | 机器学习 | 子宫内膜癌 | 深度学习 | OnmiMHC | 质谱数据和其他相关数据 | NA |
4632 | 2025-03-19 |
Pollen image manipulation and projection using latent space
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1539128
PMID:40093610
|
研究论文 | 本文利用深度学习技术中的风格迁移方法,研究如何通过显微镜图像处理改变花粉颗粒的大小和形状 | 首次将风格迁移技术应用于花粉颗粒图像的处理,以揭示其结构特征并生成多样化的花粉图像 | 未明确提及具体的数据集规模或实验验证的详细结果 | 研究花粉颗粒图像的处理方法,以增强对植物分类和生态学的理解 | 花粉颗粒的显微镜图像 | 计算机视觉 | NA | 风格迁移 | NA | 图像 | NA |
4633 | 2025-03-19 |
AI-powered topic modeling: comparing LDA and BERTopic in analyzing opioid-related cardiovascular risks in women
2025, Experimental biology and medicine (Maywood, N.J.)
DOI:10.3389/ebm.2025.10389
PMID:40093658
|
研究论文 | 本文比较了LDA和BERTopic两种主题建模技术在分析女性阿片类药物相关心血管风险中的应用 | 整合AI模块到LDA和BERTopic中,并首次在阿片类药物相关心血管风险分析中进行了全面比较 | LDA的解释需要手动进行,且需要特殊的数据预处理和停用词排除程序 | 比较LDA和BERTopic在分析女性阿片类药物相关心血管风险中的表现 | 女性阿片类药物相关心血管风险 | 自然语言处理 | 心血管疾病 | 主题建模 | LDA, BERTopic | 文本 | 1,837篇PubMed摘要 |
4634 | 2025-03-19 |
A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.013
PMID:40093651
|
研究论文 | 本文提出了一种新颖的两步概念驱动方法,旨在提高皮肤病变诊断的可解释性和信任度 | 通过模拟概念瓶颈模型的两个阶段,利用预训练的视觉语言模型自动预测临床概念,并使用现成的大型语言模型基于预测概念生成疾病诊断,支持测试时的人工干预以修正预测概念,从而提高最终诊断的准确性和决策透明度 | 需要少量标注示例,且未提及在大规模数据集上的验证 | 提高深度学习系统在临床环境中的可解释性和信任度 | 皮肤病变诊断 | 计算机视觉 | 皮肤病变 | 概念瓶颈模型(CBM)、视觉语言模型(VLM)、大型语言模型(LLM) | CBM、VLM、LLM | 图像 | 三个皮肤病变数据集 |
4635 | 2025-03-19 |
The global research of artificial intelligence on inflammatory bowel disease: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251326217
PMID:40093709
|
研究论文 | 本文通过文献计量学分析评估了人工智能(AI)在炎症性肠病(IBD)中的相关研究,识别了研究基础、当前热点和未来发展方向 | 首次通过文献计量学分析总结了AI在IBD中的应用现状,并可视化揭示了发展趋势和未来研究热点 | AI在IBD中的应用仍处于初期阶段,研究深度和广度有待进一步扩展 | 评估AI在IBD中的研究现状,识别研究基础和未来发展方向 | 炎症性肠病(IBD) | 机器学习 | 炎症性肠病 | 文献计量学分析 | 深度学习模型 | 文献数据 | 176篇AI相关论文,涉及1919位作者、790个研究机构、184种期刊和49个国家/地区 |
4636 | 2025-03-19 |
Data transformation of unstructured electroencephalography reports by natural language processing: improving data usability for large-scale epilepsy studies
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1521001
PMID:40093737
|
研究论文 | 本研究介绍了一种利用自然语言处理技术将癫痫患儿的非结构化脑电图报告转化为结构化数据的层次算法 | 开发了一种结合深度学习和基于规则的关键词提取的分层算法,用于将非结构化脑电图报告转化为结构化数据,提高了数据可用性 | 研究主要针对儿科癫痫患者,可能不适用于其他类型的患者或疾病 | 提高脑电图报告的数据可用性,以支持大规模癫痫研究 | 儿科癫痫患者的脑电图报告 | 自然语言处理 | 癫痫 | 自然语言处理(NLP) | 深度学习 | 文本 | 17,172份脑电图报告,来自3,423名儿科患者,其中6,173份正常和6,173份异常报告用于算法开发 |
4637 | 2025-03-19 |
Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases
2025, Theranostics
IF:12.4Q1
DOI:10.7150/thno.100786
PMID:40093903
|
综述 | 本文综述了人工智能增强的视网膜成像作为系统性疾病的生物标志物的研究进展 | 利用人工智能技术,特别是深度学习,增强视网膜成像在预测多种系统性疾病中的潜力 | 数据和技术的挑战与限制,包括自然语言处理框架和大语言模型的应用带来的机遇与担忧 | 探讨人工智能增强的视网膜成像在系统性疾病的筛查、早期检测、预测、风险分层和个性化预后中的潜力 | 视网膜图像 | 数字病理学 | 心血管疾病, 中枢神经系统疾病, 慢性肾病, 代谢疾病, 内分泌疾病, 肝胆疾病 | 深度学习, 自然语言处理, 大语言模型 | NA | 图像 | NA |
4638 | 2025-03-19 |
ViE-Take: A Vision-Driven Multi-Modal Dataset for Exploring the Emotional Landscape in Takeover Safety of Autonomous Driving
2025, Research (Washington, D.C.)
DOI:10.34133/research.0603
PMID:40093973
|
研究论文 | 本文介绍了ViE-Take,一个用于探索自动驾驶接管安全中情感影响的多模态数据集 | ViE-Take是首个以视觉驱动的方式探索自动驾驶接管中情感影响的数据集,具有多源情感激发、多模态驾驶员数据收集和多维情感注释三个关键属性 | 数据集的应用范围和深度仍需进一步验证和扩展 | 探索情感对驾驶员接管表现的影响,并开发相关预测模型 | 自动驾驶中的驾驶员接管表现 | 计算机视觉 | NA | 深度学习 | CNN, LSTM, GAN等 | 图像、视频 | 未明确提及具体样本数量 |
4639 | 2025-03-19 |
TPepRet: a deep learning model for characterizing T-cell receptors-antigen binding patterns
2024-Dec-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf022
PMID:39880376
|
研究论文 | 本文介绍了一种名为TPepRet的深度学习模型,用于表征T细胞受体(TCR)与抗原肽的结合模式 | TPepRet模型创新性地结合了子序列挖掘与语义整合能力,利用双向门控循环单元(BiGRU)网络和大语言模型框架,全面分析子序列和全局序列,从而准确解读TCR与肽之间的语义结合关系 | 尽管TPepRet在多种挑战性场景中表现出色,但其在更广泛的实际临床应用中的有效性和稳定性仍需进一步验证 | 研究目的是开发一种能够准确表征TCR与抗原肽结合模式的深度学习模型,以推进癌症免疫治疗、疫苗设计和自身免疫疾病管理 | 研究对象为T细胞受体(TCR)与抗原肽的结合模式 | 自然语言处理 | 癌症 | 深度学习 | BiGRU, 大语言模型 | 序列数据 | 使用了多种数据集进行性能基准测试,包括复杂环境中的真实结合体识别、大规模数据集的表达率验证等 |
4640 | 2025-03-19 |
Grand canonical Monte Carlo and deep learning assisted enhanced sampling to characterize the distribution of Mg2+ and influence of the Drude polarizable force field on the stability of folded states of the twister ribozyme
2024-Dec-14, The Journal of chemical physics
IF:3.1Q1
DOI:10.1063/5.0241246
PMID:39665326
|
研究论文 | 本研究结合大正则蒙特卡洛模拟和深度学习辅助的增强采样方法,探讨了Mg2+分布及Drude极化力场对twister核酶折叠状态稳定性的影响 | 首次将振荡化学势大正则蒙特卡洛与机器学习方法结合,用于研究Mg2+分布及电子极化对RNA稳定性的影响 | 研究局限于twister核酶,未涉及其他RNA结构 | 探索Mg2+分布及电子极化对RNA稳定性的影响 | twister核酶 | 分子动力学模拟 | NA | 大正则蒙特卡洛模拟、机器学习、元动力学模拟 | NA | 分子动力学模拟数据 | NA |