深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24517 篇文献,本页显示第 4621 - 4640 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4621 2025-04-07
Parametric-MAA: fast, object-centric avoidance of metal artifacts for intraoperative CBCT
2025-Apr-05, International journal of computer assisted radiology and surgery IF:2.3Q2
research paper 提出了一种新型参数化金属伪影避免方法(P-MAA),用于快速优化锥束CT(CBCT)成像中的轨迹,以减少金属伪影 通过深度学习模型检测关键点,将临床相关物体建模为椭球体,提出了一种计算高效的轨迹评分方法,显著提高了速度 未明确说明方法在极端复杂情况下的表现,以及是否适用于所有类型的金属植入物 解决锥束CT成像中金属伪影的问题,提高图像质量 骨科和创伤应用中的金属植入物及其周围的临床相关区域 医学影像处理 骨科疾病 深度学习,椭球体建模 深度学习模型 图像 模拟和真实临床数据
4622 2025-04-07
Deep learning-based estimation of respiration-induced deformation from surface motion: A proof-of-concept study on 4D thoracic image synthesis
2025-Apr-05, Medical physics IF:3.2Q1
研究论文 提出一种非患者特定的级联集成模型(CEM),用于从表面运动估计呼吸引起的胸部组织变形 提出了一种不需要患者特定呼吸数据采样和额外训练的级联集成模型(CEM),用于估计胸部组织变形 研究仅基于模拟的表面运动和有限的4D-CT数据集进行验证 开发一种方法以减少4D-CT采集中的辐射暴露,同时保持图像质量 胸部组织变形和4D-CT图像合成 医学影像分析 胸部疾病 深度学习 级联集成模型(CEM) 4D-CT图像 62个私有4D-CT数据集和80个公共4D-CT数据集
4623 2025-04-07
Deep learning assisted detection and segmentation of uterine fibroids using multi-orientation magnetic resonance imaging
2025-Apr-05, Abdominal radiology (New York)
research paper 开发深度学习模型用于自动化检测和分割子宫肌瘤的多方位MRI图像 基于三维nnU-Net框架构建的模型,在子宫肌瘤的检测和分割中表现出色,特别是在临床相关病例中 未提及模型在小样本或不同类型肌瘤上的泛化能力 开发自动化检测和分割子宫肌瘤的深度学习模型 子宫肌瘤患者的多方位MRI图像 digital pathology uterine fibroids MRI nnU-Net image 内部数据集299名患者(训练集239名,内部测试集60名),外部数据集45名患者
4624 2025-04-07
Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques
2025-Apr-04, Oncotarget
评论 本文探讨了基于深度学习的肝胆影像技术中的不确定性量化方法,以提高诊断准确性和可靠性 介绍了Anisotropic Hybrid Network (AHUNet)这一现代架构,结合2D成像和3D体积数据,通过创新卷积方法提升肝胆影像分析 未提及具体实验数据或样本量,可能缺乏实证支持 提高肝胆影像技术的质量保证和诊断准确性 肝胆影像技术,特别是肿瘤学条件和癌前病变的早期检测 医学影像分析 肝胆肿瘤 深度学习 AHUNet 2D成像和3D体积数据 NA
4625 2025-04-07
MIST: An interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis
2025-Apr-04, Science advances IF:11.7Q1
研究论文 介绍了一个名为MIST的深度学习框架,用于单T细胞转录组和受体分析,具有可解释性和灵活性 MIST框架通过三个潜在空间(基因表达、TCR和联合潜在空间)实现转录组和TCR数据的向量化和整合,解析细胞功能和抗原特异性 NA 深入T细胞免疫功能研究 单T细胞的转录组和T细胞受体(TCR)特征 机器学习 肺癌 单细胞转录组分析 深度学习框架 转录组和TCR数据 涉及抗原特异性T细胞、肺癌免疫治疗和COVID19相关的T细胞数据集
4626 2025-04-07
Uncertainty-aware quantitative CT evaluation of emphysema and mortality risk from variable radiation dose images
2025-Apr-04, European radiology IF:4.7Q1
研究论文 开发了一种自动化方法,用于联合且一致地评估肺气肿和死亡风险,并提供数据和模型不确定性的量化 使用多任务贝叶斯神经网络(BNN)联合评估肺气肿和死亡风险,并量化数据和模型不确定性 研究仅基于COPDGene研究的数据,可能不适用于其他人群 开发一种对成像协议更具鲁棒性的CT评估方法,用于肺气肿和死亡风险的量化 COPDGene研究中接受全剂量和减剂量胸部CT扫描的参与者 数字病理学 慢性阻塞性肺疾病(COPD) 胸部CT扫描 贝叶斯神经网络(BNN) 图像 1350名参与者(平均年龄64.4岁±8.7;659名女性)
4627 2025-04-07
Evaluation of a deep learning segmentation tool to help detect spinal cord lesions from combined T2 and STIR acquisitions in people with multiple sclerosis
2025-Apr-04, European radiology IF:4.7Q1
research paper 开发并评估了一种深度学习模型,用于从T2和STIR序列中检测多发性硬化症患者的脊髓病变 首次开发了一种结合T2和STIR序列的深度学习工具,用于辅助临床医生检测多发性硬化症患者的脊髓病变 样本量较小(50名患者),且未显示工具在提高精确度方面的显著效果 评估深度学习模型在辅助检测多发性硬化症患者脊髓病变中的效果 多发性硬化症患者的脊髓MRI图像 digital pathology multiple sclerosis MRI (T2 and STIR sequences) DL (deep learning) image 50名患者(39名女性,中位年龄41岁)
4628 2025-04-07
Deep learning model for detecting cystoid fluid collections on optical coherence tomography in X-linked retinoschisis patients
2025-Apr-04, Acta ophthalmologica IF:3.0Q1
research paper 本文验证了一种深度学习框架,用于在X连锁视网膜劈裂症患者的SD-OCT图像中检测和量化囊样液体聚集 开发了一种基于no-new-U-Net的深度学习模型,用于自动分割和量化X连锁视网膜劈裂症患者的囊样液体聚集 深度学习模型存在系统性高估的问题,需要未来进一步优化 验证深度学习模型在X连锁视网膜劈裂症患者SD-OCT图像中检测和量化囊样液体聚集的有效性 X连锁视网膜劈裂症患者的SD-OCT图像 digital pathology X-linked retinoschisis spectral-domain optical coherence tomography (SD-OCT) no-new-U-Net image 112 OCT volumes (70训练, 42内部测试), 37 SD-OCT scans (20患者)
4629 2025-04-07
CodonTransformer: a multispecies codon optimizer using context-aware neural networks
2025-Apr-03, Nature communications IF:14.7Q1
研究论文 介绍了一种名为CodonTransformer的多物种密码子优化器,利用上下文感知神经网络进行密码子优化 提出了共享令牌表示与对齐多掩码策略(STREAM),并开发了一个可定制的开源模型和用户友好的Google Colab界面 NA 优化密码子使用以满足不同生物体的偏好 164种生物体的超过100万对DNA-蛋白质序列 自然语言处理 NA 深度学习 Transformer DNA序列 超过100万对DNA-蛋白质序列
4630 2025-04-07
Genetically regulated eRNA expression predicts chromatin contact frequency and reveals genetic mechanisms at GWAS loci
2025-Apr-03, Nature communications IF:14.7Q1
研究论文 本研究开发了计算机模型预测增强子RNA的遗传调控表达,并利用深度学习模型研究三维染色质接触频率,揭示了增强子RNA在精神分裂症等复杂性状中的作用 首次利用增强子RNA的遗传调控表达预测染色质接触频率,并应用于GWAS位点的遗传机制解析 研究仅针对49种细胞和组织类型,可能无法涵盖所有相关生物环境 探索增强子RNA的遗传调控机制及其对疾病风险的影响 增强子RNA和典型基因 基因组学 精神分裂症 Hi-C接触数据、TWAS、孟德尔随机化 深度学习模型 基因组数据 >70,000个DNA样本(UK Biobank)
4631 2025-04-07
Linking sequence restoration capability of shuffled coronary angiography to coronary artery disease diagnosis
2025-Apr-03, Scientific reports IF:3.8Q1
研究论文 本研究探讨了冠状动脉造影(CA)帧序列在冠状动脉疾病(CAD)诊断中的潜在价值,并开发了一种自监督深度学习模型来评估序列恢复能力 揭示了冠状动脉造影帧序列中的'序列价值',并开发了自监督深度学习模型来自动评估这一能力 NA 探索冠状动脉造影帧序列在冠状动脉疾病诊断中的应用 冠状动脉造影帧序列 数字病理学 心血管疾病 自监督深度学习 深度学习模型 图像序列 通过Amazon Mturk进行调研,具体样本数量未提及
4632 2025-04-07
An interpretable deep learning model for the accurate prediction of mean fragmentation size in blasting operations
2025-Apr-03, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种NRBO-CNN-LSSVM模型,用于预测爆破作业中的平均破碎尺寸,结合了CNN、LSSVM和NRBO技术 整合了CNN、LSSVM和NRBO技术,提高了预测准确性和适用性,并开发了交互式GUI以增强实用性 样本量较小(105个样本),可能影响模型的泛化能力 提高爆破作业中平均破碎尺寸的预测准确性 爆破作业中的平均破碎尺寸 机器学习 NA CNN, LSSVM, NRBO, SVM, SVR NRBO-CNN-LSSVM, CNN-LSSVM, CNN, LSSVM, SVM, SVR 数值数据 105个样本(来自先前研究和现场采集)
4633 2025-04-07
Difficulty aware programming knowledge tracing via large language models
2025-Apr-03, Scientific reports IF:3.8Q1
research paper 本文提出了一种基于大语言模型的难度感知编程知识追踪方法(DPKT),用于评估编程问题的文本理解难度和知识概念难度,并动态更新学生的知识状态 结合注意力机制和图注意力网络,动态更新学生的知识状态,显著提高了编程问题难度的评估准确性和知识状态的时空反映能力 未提及具体的数据集规模或实验限制 提高编程知识追踪的准确性,促进个性化学习 学生在智能辅导系统中的交互数据 natural language processing NA large language models, attention mechanism, graph attention network DPKT text NA
4634 2025-04-07
Efficient fault diagnosis in rolling bearings lightweight hybrid model
2025-Apr-03, Scientific reports IF:3.8Q1
研究论文 提出了一种用于滚动轴承故障诊断的轻量级混合模型TSL-Transformer,结合了Transformer和LSTM模块以提高特征提取效率和诊断准确性 对传统Transformer模型进行轻量级改进,引入多头注意力机制和前馈神经网络,并并行加入LSTM模块以增强时序特征捕获能力 仅在CWRU数据集上进行了验证,未提及其他数据集或实际工业场景的测试结果 解决传统深度学习方法处理长时间序列数据时特征提取和模型训练效率低下的问题 滚动轴承的振动信号 机器学习 NA 多头注意力机制,LSTM TSL-Transformer(Transformer与LSTM混合模型) 时间序列数据(振动信号) CWRU数据集(具体样本量未说明)
4635 2025-04-07
An enhanced CNN-Bi-transformer based framework for detection of neurological illnesses through neurocardiac data fusion
2025-Apr-03, Scientific reports IF:3.8Q1
research paper 提出了一种基于CNN-Bi-Transformer的多模态深度学习框架,通过神经心脏数据融合预测精神疾病 结合MEG、EEG和ECG信号,利用CardioNeuroFusionNet模型实现多模态输入的同时处理,提高了预测性能 未提及具体样本量及数据来源的多样性可能对泛化能力的影响 开发一种创新的多模态深度学习框架,用于精神疾病的预测 癫痫、睡眠障碍、双相情感障碍、进食障碍和抑郁症等精神疾病患者 machine learning neurological and psychiatric conditions multimodal deep learning, neurocardiac data fusion CNN-Bi-Transformer (CardioNeuroFusionNet) MEG, EEG, ECG signals NA
4636 2025-04-07
CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification-leveraging deep learning models for enhanced diagnostic accuracy
2025-Apr-03, BMC cancer IF:3.4Q2
研究论文 该研究提出了一种结合因果推理的卷积神经网络CausalCervixNet,用于提高宫颈癌细胞分类的诊断准确性和可解释性 将因果推理、因果推断和因果发现整合到诊断框架中,揭示了潜在的因果关系,而不仅仅是依赖观察相关性 NA 提高宫颈癌细胞分类的诊断准确性和可解释性 宫颈癌细胞图像 计算机视觉 宫颈癌 深度学习 CNN 图像 三个数据集:SIPaKMeD、Herlev和自收集的ShUCSEIT数据集
4637 2025-04-07
Deep learning assisted retinal microvasculature assessment and cerebral small vessel disease in Fabry disease
2025-Apr-03, Orphanet journal of rare diseases IF:3.4Q2
research paper 本研究利用深度学习评估法布里病患者的视网膜微血管参数,并分析其与脑小血管病相关脑损伤的相关性 首次使用深度学习辅助分析法布里病患者的视网膜微血管参数,并发现这些参数与脑小血管病评分显著相关 样本量较小(仅27名患者和27名对照),且为回顾性研究 评估法布里病患者的视网膜微血管变化及其与脑小血管病的相关性 法布里病患者和健康对照者的视网膜微血管参数 digital pathology Fabry disease deep learning NA image 27名法布里病患者和27名年龄性别匹配的健康对照者
4638 2025-04-07
Tackling a textbook example of multistep enzyme catalysis with deep learning-driven design
2025-Apr-03, Molecular cell IF:14.5Q1
research paper 该研究利用深度学习技术设计丝氨酸水解酶,以媲美天然酶的复杂性和催化效率 通过深度学习驱动的设计方法,成功实现了与天然酶相媲美的丝氨酸水解酶设计 NA 探索利用深度学习技术设计高效酶催化剂 丝氨酸水解酶 machine learning NA deep learning NA NA NA
4639 2025-04-07
Encoding matching criteria for cross-domain deformable image registration
2025-Apr, Medical physics IF:3.2Q1
research paper 该研究提出了一种用于跨域可变形图像配准的编码匹配准则方法,以提高配准精度和适应性 设计了通用特征编码器(Encoder-G)和结构特征编码器(Encoder-S),并通过一次性学习更新Encoder-S,使方法能有效适应不同领域 未提及具体局限性 解决跨域可变形图像配准问题,提高配准精度和适应性 MRI图像,包括脑部、腹部和心脏图像 computer vision NA deep learning Encoder-G, Encoder-S image 脑部图像(训练/测试:870/90对),腹部图像(训练/测试:1406/90对),心脏图像(训练/测试:64770/870对)
4640 2025-04-07
Improved deep learning-based IVIM parameter estimation via the use of more "realistic" simulated brain data
2025-Apr, Medical physics IF:3.2Q1
研究论文 提出了一种基于合成数据的监督学习方法(SDD-IVIM),用于提高IVIM参数估计的精度和噪声鲁棒性 引入了一种新的基于模型的合成人类脑IVIM数据生成方法,并结合U-Net进行参数映射 方法依赖于合成数据,未使用真实世界数据进行神经网络训练 提高IVIM参数估计的精度和噪声鲁棒性 脑IVIM成像参数估计 医学影像分析 脑胶质瘤 IVIM双指数模型 U-Net 合成脑多b值扩散加权图像 20名脑胶质瘤患者
回到顶部