本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4681 | 2025-03-12 |
Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique
2024-Dec, NMR in biomedicine
IF:2.7Q1
DOI:10.1002/nbm.5266
PMID:39358992
|
研究论文 | 本文开发了一种基于快速T1恢复曲线采样、选择性切片反转、优化切片交错和卷积神经网络(CNN)的T1映射框架,用于高效腹部覆盖 | 结合了快速T1恢复曲线采样、选择性切片反转、优化切片交错和CNN技术,实现了在单次呼吸保持期内完成全腹部覆盖 | 需要进一步验证在不同临床环境下的适用性和稳定性 | 开发一种高效的腹部T1映射方法,以减少呼吸保持期和T1恢复时间 | 腹部器官 | 医学影像 | NA | T1映射 | CNN | 医学影像数据 | 测试对象 |
4682 | 2025-03-12 |
Serum Potassium Monitoring Using AI-Enabled Smartwatch Electrocardiograms
2024-Dec, JACC. Clinical electrophysiology
DOI:10.1016/j.jacep.2024.07.023
PMID:39387744
|
研究论文 | 本研究开发了一种AI-ECG算法,用于通过智能手表生成的ECG波形预测终末期肾病患者的血清钾水平 | 利用AI技术从智能手表的单导联ECG数据中预测血清钾水平,为远程监测高钾血症提供了新的工具 | 研究主要基于特定医疗中心的数据,外部验证的样本量相对较小,且未涵盖所有类型的高钾血症患者 | 开发一种AI-ECG算法,用于预测终末期肾病患者的血清钾水平,以实现远程监测 | 终末期肾病患者 | 数字病理学 | 慢性肾病 | AI-ECG算法 | 深度学习模型 | ECG波形数据 | 152,508名患者的293,557份ECG数据,以及1,463名终末期肾病患者的4,337份ECG数据 |
4683 | 2025-03-12 |
Artificial Intelligence in Histopathology
2024-Dec, Journal of pharmacy & bioallied sciences
DOI:10.4103/jpbs.jpbs_727_24
PMID:40061791
|
综述 | 本文探讨了人工智能在数字病理学中的应用,特别是如何通过深度学习和机器学习技术提高病理切片的成像质量,并帮助医生更快做出诊断 | 本文强调了人工智能在减少病理学家工作量、提高病理报告公正性和一致性方面的潜力,以及通过从易获取数据中识别隐藏信息来影响治疗决策的能力 | 本文未具体提及人工智能在数字病理学中应用的具体技术限制或挑战 | 探讨人工智能在数字病理学中的应用及其对病理诊断和治疗决策的影响 | 数字病理学中的全切片病理图像 | 数字病理学 | NA | 深度学习和机器学习 | NA | 图像 | NA |
4684 | 2025-03-12 |
A Protocol for Body MRI/CT and Extraction of Imaging-Derived Phenotypes (IDPs) from the China Phenobank Project
2024-Dec, Phenomics (Cham, Switzerland)
DOI:10.1007/s43657-023-00141-x
PMID:40061820
|
研究论文 | 本文描述了中国表型库项目中的全身成像协议及图像处理流程,旨在促进基于该平台的研究规划 | 提出了一个适用于多器官的全身成像协议,并利用深度学习分割模型处理大量数据 | 未提及具体的研究结果或数据验证 | 为基于中国表型库项目平台的研究提供参考 | 心脏、肝脏、脾脏、胰腺、肾脏、肺、前列腺和子宫等多器官 | 数字病理 | NA | MRI, CT | 深度学习分割模型 | 图像 | NA |
4685 | 2025-03-12 |
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT
2024-Nov-25, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3496870
PMID:40030354
|
研究论文 | 本文提出了一种基于散射窗投影和深度学习的无传输衰减补偿方法(CTLESS),用于心肌灌注SPECT成像 | CTLESS方法无需单独的X射线CT扫描,通过深度学习从散射能量窗投影中重建衰减图,避免了额外的辐射剂量和成本,并解决了SPECT与CT图像不对齐的问题 | 该方法仍需在更大规模的临床数据上进行进一步验证,以确认其广泛适用性 | 开发一种无需CT扫描的心肌灌注SPECT成像衰减补偿方法,以提高诊断准确性和降低成本 | 心肌灌注SPECT图像 | 数字病理学 | 心血管疾病 | 深度学习 | 多通道输入多解码器网络 | 图像 | 回顾性研究中使用匿名临床SPECT/CT应力心肌灌注图像 |
4686 | 2025-03-12 |
Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer
2024-11, Ultrasonic imaging
IF:2.5Q2
DOI:10.1177/01617346241276168
PMID:39257175
|
研究论文 | 本文研究了一种基于术前超声影像组学、深度学习和临床特征的综合模型,用于预测乳腺癌新辅助化疗后的病理完全缓解(pCR) | 结合了超声影像组学、深度学习和临床特征,构建了综合预测模型DLRC,显著提高了预测准确性 | 样本量相对较小,仅包含155名患者,可能影响模型的泛化能力 | 预测乳腺癌患者在新辅助化疗后的病理完全缓解状态 | 155名经病理确诊并接受新辅助化疗的乳腺癌患者 | 数字病理 | 乳腺癌 | 超声影像组学、深度学习 | 随机森林递归消除算法、最小绝对收缩和选择算子、多因素逻辑回归 | 超声图像 | 155名乳腺癌患者 |
4687 | 2025-03-12 |
Deep Learning Reconstruction in Abdominopelvic Contrast-Enhanced CT for The Evaluation of Hemorrhages
2024-11, Radiologic technology
IF:0.7Q4
PMID:39472011
|
研究论文 | 本研究探讨了深度学习重建在腹盆部增强CT中描绘动脉和评估出血的效果,并与混合迭代重建进行了比较 | 首次在腹盆部增强CT中应用深度学习重建技术,显著改善了动脉描绘和出血评估的图像质量 | 样本量较小(16例患者),需要更大规模的前瞻性研究来验证结果 | 评估深度学习重建在腹盆部增强CT中描绘动脉和评估出血的效果 | 16例急性出血患者 | 医学影像 | 出血 | 深度学习重建、混合迭代重建、滤波反投影 | 深度学习 | CT图像 | 16例患者(8男8女,平均年龄54.2±22.1岁) |
4688 | 2025-03-12 |
Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction
2024-Oct-28, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.30.24312806
PMID:39252904
|
研究论文 | 本文介绍了认知功能障碍在成瘾中的应用(CDiA)研究计划,旨在填补对成瘾中执行功能的理解空白,并促进对成瘾患者的治疗改进 | CDiA计划通过跨学科团队科学和转化研究,整合临床、临床前和健康服务研究,探索执行功能与成瘾严重程度和功能恢复的关联 | 研究样本仅限于18-60岁寻求成瘾治疗的成年人,且随访时间仅为一年,可能限制结果的普遍性 | 提高成瘾患者的健康结果,通过研究执行功能与成瘾的关联,为政策和干预措施提供依据 | 寻求成瘾治疗的成年人(18-60岁) | 神经科学 | 成瘾 | 重复经颅磁刺激、药物干预、全人建模 | 聚类分析、深度学习 | 多模态数据(包括脑回路、血液生物标志物、功能结果等) | 目标样本量为400名寻求成瘾治疗的成年人 |
4689 | 2025-03-12 |
Carafe enables high quality in silico spectral library generation for data-independent acquisition proteomics
2024-Oct-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.15.618504
PMID:39463980
|
研究论文 | 本文介绍了Carafe,一种通过直接在DIA数据上训练深度学习模型来生成高质量实验特异性光谱库的工具 | Carafe直接在DIA数据上训练深度学习模型,而不是依赖DDA数据或基于DDA数据训练的模型,从而提高了碎片离子强度预测和肽段检测的性能 | NA | 开发一种工具,用于生成高质量的光谱库,以支持数据独立采集(DIA)质谱分析 | DIA质谱数据 | 质谱分析 | NA | 深度学习 | 深度学习模型 | 质谱数据 | 多种DIA数据集 |
4690 | 2025-03-12 |
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT
2024-Sep-12, ArXiv
PMID:39314501
|
研究论文 | 本文提出了一种基于散射窗口投影和深度学习的无传输衰减补偿方法(CTLESS),用于心肌灌注SPECT成像 | 该方法无需单独的X射线CT扫描,通过深度学习从散射能量窗口投影中重建衰减图,并利用多通道输入多解码器网络进行区域分割,从而实现衰减补偿 | 需要进一步临床评估以验证其广泛适用性 | 解决心肌灌注SPECT成像中衰减补偿的问题,减少辐射剂量和成本,并提高诊断准确性 | 心肌灌注SPECT图像 | 数字病理学 | 心血管疾病 | 深度学习 | 多通道输入多解码器网络 | 图像 | 匿名临床SPECT/CT应激心肌灌注图像 |
4691 | 2025-03-12 |
Automatic Quantitative Assessment of Muscle Strength Based on Deep Learning and Ultrasound
2024-09, Ultrasonic imaging
IF:2.5Q2
DOI:10.1177/01617346241255590
PMID:38881032
|
研究论文 | 本文提出了一种基于深度学习和超声技术的自动肌肉力量评估方法 | 利用深度学习和超声技术自动评估肌肉力量,减少对操作者专业知识的依赖 | 研究仅针对肱二头肌,未涉及其他肌肉群 | 开发一种自动评估肌肉力量的方法,以辅助运动员康复和力量训练 | 运动员的肱二头肌 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 超声图像 | 多名运动员的肱二头肌B型超声数据 |
4692 | 2025-03-12 |
Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer
2024-09, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04232-9
PMID:38489038
|
研究论文 | 本文探讨了基于深度学习的多参数磁共振成像(mp-MRI)列线图在预测直肠癌Ki-67表达中的价值 | 结合深度学习和临床模型构建列线图,显著提高了预测Ki-67表达的准确性 | 研究为回顾性分析,可能存在选择偏倚 | 预测直肠癌中Ki-67的表达状态 | 491名直肠癌患者 | 医学影像分析 | 直肠癌 | 多参数磁共振成像(mp-MRI) | 深度学习模型 | 医学影像数据 | 491名患者,分为训练集、内部验证集和外部验证集 |
4693 | 2025-03-12 |
CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans
2024-Sep, Nature immunology
IF:27.7Q1
DOI:10.1038/s41590-024-01888-9
PMID:39164479
|
研究论文 | 本文通过单细胞转录组学评估了BNT162b2 mRNA疫苗接种后3个月和6个月时,血液和引流淋巴结中针对SARS-CoV-2刺突蛋白的CD4 T细胞反应 | 使用深度学习反向表位映射方法Trex预测抗原特异性,揭示了人类引流淋巴结中刺突特异性CD4滤泡辅助T细胞的异质性表型 | 研究样本量相对较小,且仅关注了特定时间点的细胞反应 | 研究SARS-CoV-2 mRNA疫苗接种后CD4 T细胞的转录表型 | 接种BNT162b2 mRNA疫苗的个体以及SARS-CoV-2感染后的个体 | 免疫学 | COVID-19 | 单细胞转录组学,深度学习反向表位映射方法Trex | 深度学习 | 转录组数据 | 1,277个刺突特异性CD4 T细胞,包括238个通过Trex定义的细胞 |
4694 | 2025-03-12 |
Contrastive Self-supervised Learning for Neurodegenerative Disorder Classification
2024-Jul-04, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.07.03.24309882
PMID:39006425
|
研究论文 | 本文探讨了对比自监督学习在神经退行性疾病分类中的应用,特别是阿尔茨海默病(AD)和额颞叶变性(FTLD)的分类 | 采用对比自监督学习方法训练深度卷积神经网络作为特征提取器,无需数据标签即可学习潜在表示,并在下游分类任务中表现出色 | 需要进一步验证在更大规模和多样化的数据集上的泛化能力 | 研究自监督学习模型是否能够以可解释的方式区分不同的神经退行性疾病 | 阿尔茨海默病(AD)和额颞叶变性(FTLD)患者及认知正常对照组(CN) | 计算机视觉 | 神经退行性疾病 | T1加权MRI扫描 | 深度卷积神经网络(CNN) | 图像 | 2694个T1加权MRI扫描,来自四个数据队列:两个ADNI数据集、AIBL和FTLDNI |
4695 | 2025-03-12 |
Deep Learning-Derived Myocardial Strain
2024-Jul, JACC. Cardiovascular imaging
DOI:10.1016/j.jcmg.2024.01.011
PMID:38551533
|
研究论文 | 本研究开发了一种自动化的深度学习应变(DLS)分析管道,用于从标准超声心动图B模式图像中测量全局纵向应变(GLS),并验证其在多种应用和人群中的性能 | 开发了一种自动化的、开源且与供应商无关的DLS方法,用于从标准超声心动图B模式图像中测量GLS,减少了操作者经验和供应商间差异的影响 | 尽管DLS在外部验证中与2D GLS保持中等一致性,但仍存在一定的偏差和一致性限制 | 开发并验证一种自动化的深度学习应变分析管道,以减少超声心动图应变测量中的操作者经验和供应商间差异 | 超声心动图B模式图像 | 数字病理 | 心血管疾病 | 深度学习 | NA | 图像 | 多个应用和人群中的患者数据 |
4696 | 2025-03-12 |
Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC53108.2024.10781599
PMID:40039079
|
研究论文 | 本文探讨了在卷积神经网络(CNN)模型中添加扩散加权MRI(dMRI)作为输入的价值,用于脑龄分析和痴呆分类,并在印度和北美人群中进行测试 | 首次在CNN模型中引入dMRI作为输入,并评估了使用3D CycleGAN方法在训练CNN模型前对成像数据集进行协调的效果 | 研究主要依赖于特定的数据集,如ADNI,且主要针对北美和印度人群,可能限制了结果的普适性 | 探索dMRI在CNN模型中的应用,以提高阿尔茨海默病分类和痴呆严重度推断的准确性 | 北美和印度人群的MRI扫描数据 | 数字病理学 | 阿尔茨海默病 | 扩散加权MRI(dMRI) | 卷积神经网络(CNN) | MRI图像 | NA |
4697 | 2025-03-12 |
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC53108.2024.10782103
PMID:40039441
|
研究论文 | 本研究评估了六种脑电图数据增强方法在基于深度学习的重度抑郁症诊断中的效用 | 引入了一个新的基线模型,该模型在重复训练数据上进行训练,以消除由于训练集大小不同而引入的偏差 | 研究结果仅限于特定的数据集和模型,可能无法推广到其他情况 | 评估数据增强方法在提高深度学习模型诊断重度抑郁症性能方面的效用 | 重度抑郁症患者 | 机器学习 | 精神疾病 | 脑电图数据增强 | 深度学习模型 | 脑电图数据 | 未明确提及样本数量 |
4698 | 2025-03-12 |
Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach
2024-Jul, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
DOI:10.1109/EMBC53108.2024.10781959
PMID:40039893
|
研究论文 | 本文提出了一种基于特征交互的可解释性方法和多种新方法来总结多模型解释,旨在识别精神分裂症的可重复重要EEG标记 | 提出了一种新的基于特征交互的可解释性方法和多种新方法来总结多模型解释 | 大多数研究仅分析少量模型的解释,导致识别出的生物标志物的普遍性受到质疑 | 识别精神分裂症的可重复重要EEG标记 | 精神分裂症患者的EEG频谱功率数据 | 机器学习 | 精神分裂症 | EEG | 多模型深度学习 | EEG数据 | NA |
4699 | 2025-03-12 |
Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts
2024-May-08, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.04.578829
PMID:38370641
|
研究论文 | 本文探讨了将扩散加权MRI(dMRI)作为卷积神经网络(CNN)模型的输入,用于脑龄分析和痴呆分类的价值,并在印度和北美人群数据集中进行了测试 | 研究了dMRI作为CNN模型输入的价值,并评估了使用3D CycleGAN方法在训练CNN模型前对成像数据集进行协调的益处 | 研究主要依赖于特定的数据集,如ADNI,且主要针对北美和印度人群,可能限制了结果的普适性 | 探讨dMRI在脑龄预测和阿尔茨海默病分类中的应用价值 | 北美和印度人群的脑部MRI数据 | 数字病理学 | 阿尔茨海默病 | 扩散加权MRI(dMRI) | 卷积神经网络(CNN),3D CycleGAN | MRI图像 | 北美ADNI数据集和印度NIMHANS数据集 |
4700 | 2025-03-12 |
Cross noise level PET denoising with continuous adversarial domain generalization
2024-Apr-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad341a
PMID:38484401
|
研究论文 | 本文提出了一种利用连续对抗域泛化技术进行跨噪声水平PET去噪的方法 | 首次从域泛化的角度解决跨噪声水平去噪中的性能下降问题,并提出了连续域泛化的新方法 | 模型在特定噪声水平上训练,可能在不同噪声水平上的泛化能力有限 | 解决PET图像去噪中由于噪声水平不同导致的分布偏移问题 | PET图像 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | 3D UNet | 3D图像 | 60名受试者的97F-MK6240 tau PET研究数据,生成1400对训练图像、120对验证图像和420对测试图像 |