深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 37939 篇文献,本页显示第 4741 - 4760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
4741 2025-11-24
YOLO-APLD: A lightweight apple leaf disease detection model based on multi-scale feature fusion
2025-Nov-23, Plant disease IF:4.4Q1
研究论文 提出一种基于改进YOLOv8n的轻量级苹果叶片病害检测模型YOLO-APLD 引入EP-C2f增强模块强化局部特征表示,提出Focal-SIoU损失函数优化检测稳定性,采用BiFPN实现多尺度特征融合,使用Slim-neck结构简化网络架构 NA 实现果园环境中苹果叶片病害的精准实时检测 苹果叶片病害(锈病、花叶病、褐斑病、白粉病、黑星病、轮斑病、灰斑病) 计算机视觉 植物病害 深度学习 YOLO 图像 NA PyTorch YOLOv8n, EP-C2f, BiFPN, Slim-neck 精确率, 召回率, 平均精度均值, F1分数, FLOPs, 参数量, 模型大小, 帧率 边缘计算设备
4742 2025-11-24
Advanced deep learning for early diagnosis of arsenic-induced dermatological conditions through dermoscopic image evaluation
2025-Nov-22, Journal of medical engineering & technology
研究论文 本研究开发了一种先进的深度学习框架,通过皮肤镜图像分析实现砷暴露引起的皮肤疾病的早期诊断 采用协同ResNet-DenseNet架构提取判别性图像特征,结合k-最近邻算法进行分类,在砷诱导皮肤病早期诊断中实现高精度分类 研究数据仅来自孟加拉国的四个现场站点,可能限制了模型的泛化能力 开发基于深度学习的早期诊断方法,用于砷暴露引起的皮肤疾病 砷暴露和未暴露个体的皮肤镜图像 计算机视觉 皮肤病 皮肤镜图像分析 CNN, k-NN 图像 8892张皮肤镜图像,来自孟加拉国四个现场站点 NA ResNet, DenseNet 准确率, F1分数, 灵敏度, 召回率 NA
4743 2025-11-24
PhyloCNN: Improving tree representation and neural network architecture for deep learning from trees in phylodynamics and diversification studies
2025-Nov-22, Systematic biology IF:6.1Q1
研究论文 提出一种基于深度学习的新方法PhyloCNN,用于系统发育动力学和多样化研究中的模型选择和参数估计 开发了专门针对系统发育树的卷积神经网络架构,通过编码所有节点和叶子的邻域信息来改进树表示 方法性能在较小训练集时受邻域数量影响较大,需要进一步验证在更广泛真实数据集上的适用性 改进系统发育动力学和多样化研究中的模型选择和参数估计方法 系统发育树,HIV超级传播者数据集,灵长类种子传播者数据集 机器学习 HIV/艾滋病 深度学习,模拟训练 CNN 系统发育树数据 10,000到100,000个模拟训练树 NA PhyloCNN 准确率 NA
4744 2025-11-24
Deep-learning reconstruction enables about one minute 3D T1-weighted MRI: quantitative evaluation of Acceleration-quality Trade-offs and motion reduction
2025-Nov-22, Neuroradiology IF:2.4Q2
研究论文 评估深度学习重建方法DL-Speed在加速3D T1加权MRI成像中的效用,包括图像质量保持和运动减少效果 系统验证深度学习重建方法在临床环境中的实用性,首次揭示图像质量与形态计量学参数随加速因子的不同变化模式 样本量有限(6名健康志愿者和40名患者),缺乏多中心验证 评估深度学习重建方法在显著加速图像采集的同时保持定量图像质量和形态计量学准确性的能力 健康志愿者和临床患者群体的3D T1加权MRI图像 医学影像分析 神经系统疾病 3D MPRAGE MRI序列,深度学习重建 深度学习 3D MRI图像 6名健康志愿者,40名患者 NA DL-Speed CAT12图像质量评级,全局皮质厚度,总灰质体积,总向量变化,Bland-Altman分析,相关系数 NA
4745 2025-11-24
Clinically oriented deep learning framework for automated vessel wall segmentation in black-blood MRI: a multi-center study
2025-Nov-22, European radiology IF:4.7Q1
研究论文 开发并验证用于黑血磁共振血管壁成像中颅内和颈动脉血管壁自动分割的临床适用深度学习框架 提出三项关键创新:极坐标映射、特征共享填充策略和极坐标Dice损失函数 回顾性研究设计,样本量相对有限(193例患者) 开发临床适用的血管壁自动分割方法以支持脑血管风险评估 颅内和颈动脉血管壁 医学影像分析 脑血管疾病 黑血磁共振血管壁成像 深度学习分割框架 磁共振影像 193例来自五家医院的患者,平均年龄60.2±4.3岁 NA NA Dice相似系数, Hausdorff距离, 面积差异 NA
4746 2025-11-24
AI-Driven Discovery and Design of Antimicrobial Peptides: Progress, Challenges, and Opportunities
2025-Nov-22, Probiotics and antimicrobial proteins IF:4.4Q2
综述 系统总结人工智能技术在抗菌肽发现与设计领域的最新进展、挑战和未来机遇 首次系统梳理AI技术在抗菌肽研究中从判别模型到生成模型的全流程应用,并提出多模态优化等创新设计策略 面临数据质量限制、模型可解释性不足和实验验证瓶颈等挑战 加速基于抗菌肽的药物研发进程 抗菌肽(AMPs) 机器学习 抗菌耐药性感染疾病 机器学习(ML)、深度学习(DL) 判别模型、回归模型、生成模型 多模态生物数据 NA NA NA NA NA
4747 2025-11-24
Deep learning-based approach for differential diagnosis of odontogenic cysts from histopathological images
2025-Nov-22, Medicina oral, patologia oral y cirugia bucal
研究论文 本研究开发基于深度学习的AI方法,利用组织病理学图像对不同类型的牙源性囊肿进行鉴别诊断 首次将多种深度学习架构应用于牙源性囊肿的自动鉴别诊断,比较了不同模型在牙科病理图像上的性能表现 数据集规模相对较小,仅包含348张图像;Xception和Inception V3模型收敛速度较慢,训练效率有待提升 开发基于深度学习的牙源性囊肿自动诊断系统 三种牙源性囊肿:含牙囊肿(87例)、根尖囊肿(198例)、牙源性角化囊肿(63例) 数字病理学 牙源性囊肿 苏木精-伊红(H&E)染色 CNN 图像 348张组织病理学图像(87张含牙囊肿,198张根尖囊肿,63张牙源性角化囊肿) NA Inception V3,VGG16,VGG19,Xception,经典CNN 准确率,精确率,灵敏度(召回率),F1分数 NA
4748 2025-11-24
Deep Learning-Assisted Differentiation of Four Peripheral Neuropathies Using Corneal Confocal Microscopy
2025-Nov-22, Annals of clinical and translational neurology IF:4.4Q1
研究论文 开发基于深度学习的外周神经病变自动诊断系统NeuropathAI,通过角膜共聚焦显微镜图像区分四种外周神经病变 首次开发可解释的多类别深度学习系统,用于快速自动诊断和区分四种常见外周神经病变 样本量相对较小(88名患者),需更大规模验证 解决外周神经病变诊断延迟和漏诊问题,开发快速自动化诊断方法 88名患有四种外周神经病变的患者:糖尿病外周神经病变、化疗诱导外周神经病变、慢性炎性脱髓鞘性多发性神经病、HIV相关感觉神经病变 数字病理学 外周神经病变 角膜共聚焦显微镜 深度学习 图像 88名患者 NA NA 准确率,F1分数,AUC,敏感性,特异性,精确度 NA
4749 2025-11-24
AI-driven multi-omics integration in precision oncology: bridging the data deluge to clinical decisions
2025-Nov-21, Clinical and experimental medicine IF:3.2Q2
综述 探讨人工智能如何整合多组学数据推动精准肿瘤学从群体化治疗向个体化医疗转型 系统阐述AI技术在多组学整合中的创新应用,包括图神经网络建模生物网络、Transformer实现跨模态融合、可解释AI提供临床决策透明度 模型泛化能力不足、伦理公平性挑战、监管标准尚未统一 通过AI驱动的多组学整合提升肿瘤精准医疗水平 多组学数据(基因组学、转录组学、蛋白质组学、代谢组学、影像组学) 机器学习 癌症 多组学整合分析 深度学习, 机器学习, 图神经网络, Transformer 多组学数据 NA NA 图神经网络, Transformer AUC 量子计算, 联邦学习
4750 2025-11-24
Pixel-level detection and classification of marine oil spills in aerial imagery with annotation uncertainty handling
2025-Nov-21, Marine pollution bulletin IF:5.3Q1
研究论文 提出基于深度学习的海洋溢油像素级检测与分类框架,能够处理标注不确定性 开发了包含真实监测数据和在线来源的互补RGB数据集,通过U-Net架构实现溢油存在检测和油品类型分类,并系统研究网络结构、数据增强和视觉模糊区域处理 多类油品分类的mIoU相对较低(0.351),模型在多样化海洋条件下的泛化能力仍需验证 开发快速准确的海洋溢油自动检测方法以支持环境缓解工作 海洋溢油现象 计算机视觉 NA 航空影像采集 CNN RGB图像 两个互补的像素级标注数据集(真实监测数据和在线来源数据) NA U-Net mIoU, 准确率 NA
4751 2025-11-24
Ultra-low dose CT for suspected physical abuse
2025-Nov-21, Journal of medical imaging and radiation sciences IF:1.3Q3
研究论文 本研究通过体模实验比较超低剂量CT与标准剂量CT在疑似虐待儿童诊断中的图像质量和辐射剂量 首次在新生儿体模上评估超低剂量全身CT用于疑似虐待诊断的可行性 基于体模研究而非真实患者,未直接与X射线摄影骨骼检查比较 评估超低剂量CT在疑似虐待儿童诊断中替代X射线摄影的潜力 新生儿全身人体模型 医学影像 儿童虐待损伤 CT扫描,深度学习迭代重建,蒙特卡洛模拟 深度学习重建算法 CT图像 46名观察者(38名放射技师和8名放射科医生) NA NA 图像质量评分,有效剂量,曲线下面积,置信区间 GE Revolution Apex扫描仪
4752 2025-11-24
Role of artificial intelligence in medical image analysis
2025-Nov-20, Chinese medical journal IF:7.5Q1
综述 概述人工智能在医学影像分析领域的最新进展、方法特点及未来趋势 系统梳理了基于卷积神经网络和大型语言模型的AI技术在医学影像分析中的新兴应用与发展轨迹 缺乏对AI技术解决关键临床挑战性能的深入分析 探讨人工智能在医学影像分析中的作用与发展趋势 医学影像分析技术 计算机视觉 NA 深度学习 CNN, LLM 医学影像 NA NA 卷积神经网络, 大型语言模型 NA NA
4753 2025-11-24
Deep learning and whole-brain networks for biomarker discovery: modeling the dynamics of brain fluctuations in resting-state and cognitive tasks
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 本研究利用深度学习模型从全脑网络模型中预测分岔参数,并评估其作为区分静息态和任务态脑状态的生物标志物的有效性 首次将全脑网络模型的分岔参数作为生物标志物,结合深度学习进行脑状态区分 仅使用合成BOLD信号进行训练,真实数据验证有限 探索分岔参数作为脑状态特征生物标志物的潜力 人脑连接组项目中的静息态和任务态脑功能数据 计算神经科学 神经系统疾病 BOLD信号分析,脑网络建模 深度学习,机器学习 fMRI数据,合成BOLD信号 人脑连接组项目数据,包含静息态和任务态条件 NA 超临界Hopf脑网络模型 分类准确率 NA
4754 2025-11-24
Real time road scene classification and enhancement for driver assistance under adverse weather
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 提出一种基于机器学习的实时道路场景分类与图像增强系统,用于恶劣天气下的驾驶辅助 在低成本硬件(Raspberry Pi 5)上实现高精度道路场景分类,并针对不同场景应用特定图像增强技术 在有限硬件上运行,可能无法处理更复杂的深度学习增强技术 开发适用于恶劣天气条件的驾驶辅助视觉系统 道路场景图像(白天、夜晚、雾天、雨天) 计算机视觉 NA 图像增强技术 Random Committee, CNN, YOLO 图像 NA NA ResNet-101, CNN, YOLO 准确率 Raspberry Pi 5, USB摄像头, 7英寸显示器
4755 2025-11-24
A lightweight improved YOLOv8 method for intelligent detection of pine wilt disease
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 提出一种基于改进YOLOv8的轻量级智能检测方法PWD-YOLO-D,用于无人机遥感图像中的松材线虫病检测 集成高效多尺度交叉注意力机制增强多尺度特征表示,采用自集成注意力模块作为检测头提升遮挡和重叠树冠识别鲁棒性,使用Focaler-IoU损失函数优化定位精度 NA 开发高效精准的松材线虫病智能检测方法以支持及时防控 松材线虫病感染的松树 计算机视觉 植物病害 无人机遥感成像 YOLO 图像 NA YOLOv8 PWD-YOLO-D(基于YOLOv8改进) AP@0.5, AP@0.5:0.95, 参数量 NA
4756 2025-11-24
Deep learning using inductively coupled plasma spectroscopy spectra accurately predicts various soil physicochemical properties for soil diagnosis
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 本研究利用电感耦合等离子体光谱数据结合深度学习准确预测多种土壤理化性质 首次证明使用土壤提取物的ICP光谱数据可同时预测多种土壤参数 仅使用1941个土壤样本,样本来源和多样性可能有限 开发快速、精确且经济实惠的土壤诊断方法 来自7个国家的1941个土壤样本,涵盖不同土地利用模式和历史的土壤 机器学习 NA 电感耦合等离子体光谱法 深度学习 光谱数据 1941个土壤样本 NA NA 决定系数 NA
4757 2025-11-24
Automated tumor stroma ratio assessment in colorectal cancer using hybrid deep learning approach
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 本研究提出一种混合深度学习框架,用于结直肠癌中肿瘤-间质比率的自动化评估 首次将Transformer机制与CNN结合用于TSR评估,通过混合CNN-Transformer UNET模型增强空间上下文理解 未明确说明样本来源的多样性和模型在外部验证集上的泛化能力 开发自动化、客观的肿瘤-间质比率评估方法以改善结直肠癌预后评估 结直肠癌全切片图像中的肿瘤和间质区域 数字病理学 结直肠癌 全切片图像分析 CNN, Transformer 图像 NA NA Efficient-TransUNet, UNET 准确率, 精确率, 召回率, F1分数, 马修斯相关系数, 聚合Dice系数 NA
4758 2025-11-24
Research on coal and gas outburst risk prediction based on improved search algorithm optimized deep learning network
2025-Nov-20, Scientific reports IF:3.8Q1
研究论文 基于改进搜索算法优化深度学习网络的煤与瓦斯突出风险预测研究 提出混沌映射和Levy飞行改进乌鸦搜索算法(ICSA)来优化CNN超参数,建立ICSA-CNN预测模型 NA 预测煤与瓦斯突出风险,提高煤矿安全生产水平 煤矿开采过程中的煤与瓦斯突出灾害 机器学习 NA 箱线图、数据插值法、相关性分析 CNN 煤矿安全监测数据 NA NA CNN 准确率、混淆矩阵 NA
4759 2025-11-24
Natural language processing techniques to detect delirium in hospitalized patients from clinical notes: a systematic review
2025-Nov-20, NPJ digital medicine IF:12.4Q1
系统综述 系统综述自然语言处理技术在临床文本中检测住院患者谵妄的应用 首次系统评估NLP技术在谵妄检测中的应用效果,特别指出基于Transformer的模型达到最高性能(AUROC 0.984) 61.5%的研究存在高偏倚风险,仅一项研究进行外部验证,缺乏前瞻性实施和患者结局评估,所有研究均未考虑公平性、缺失数据处理和实施指导 评估自然语言处理技术在临床文本中自动检测谵妄的应用效果和方法 住院患者临床文本数据 自然语言处理 老年疾病 自然语言处理 规则方法,机器学习,深度学习,主题建模,半监督学习 临床文本 超过450,000名患者 NA Transformer 敏感度,AUROC NA
4760 2025-11-24
Fetal gestational age estimation using artificial intelligence on non-targeted ultrasound images and video
2025-Nov-20, NPJ digital medicine IF:12.4Q1
研究论文 开发了一种基于深度学习的胎儿孕周估计模型,可从任意方向的超声图像直接估计孕周 首次使用非定向超声图像和视频进行胎儿孕周估计,无需特定图像方向,并输出不确定性评估 NA 开发一种不依赖专业技能的人工智能胎儿孕周估计方法 胎儿超声图像和视频 医学影像分析 产科疾病 超声成像 深度学习 图像, 视频 78,531例妊娠的200多万张超声图像,验证集包含742个胎儿的36,762张图像 NA NA 平均绝对误差, p值 NA
回到顶部