本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461 | 2025-08-05 |
Advancing Alzheimer's Diagnosis with AI-Enhanced MRI: A Review of Challenges and Implications
2025-Jul-30, Current neuropharmacology
IF:4.8Q1
|
综述 | 本文综述了利用AI增强MRI技术在阿尔茨海默病诊断中的挑战和意义 | 重点评估了卷积神经网络(CNNs)和非卷积人工神经网络(NC-ANNs)在脑部图像处理任务中的应用及其在提高神经退行性疾病诊断预测性能方面的潜力 | 讨论了MRI基于深度学习方法在诊断脑部疾病中的局限性 | 旨在通过AI技术提高阿尔茨海默病的诊断准确性和患者治疗效果 | 阿尔茨海默病(AD)患者 | 数字病理学 | 老年病 | MRI | CNN, NC-ANN | 图像 | NA |
462 | 2025-08-05 |
Automated Brain Tumor Segmentation using Hybrid YOLO and SAM
2025-Jul-30, Current medical imaging
IF:1.1Q3
|
research paper | 提出了一种结合YOLO和SAM的混合深度学习框架,用于脑肿瘤的自动分割和早期诊断 | 首次将YOLOv11实时目标检测与SAM精确分割模型结合,并通过加深CNN卷积层增强特征提取能力 | 仅使用896张MRI图像进行验证,样本量相对有限 | 开发高效的脑肿瘤早期自动诊断系统 | 脑肿瘤MRI影像 | digital pathology | brain tumor | deep learning | CNN+YOLOv11+SAM | MRI images | 896张包含肿瘤和健康脑部的MRI图像 |
463 | 2025-08-05 |
Fine-grained Prototype Network for MRI Sequence Classification
2025-Jul-30, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文提出了一种细粒度原型网络SequencesNet,用于MRI序列分类,通过结合CNN和改进的视觉变换器来提取特征,并利用特征选择模块和原型分类模块来提高分类性能 | 提出了一种结合CNN和改进视觉变换器的细粒度原型网络SequencesNet,通过特征选择模块和原型分类模块有效处理MRI序列中的细粒度差异 | 计算复杂度较高,模型泛化能力有待进一步提升 | 解决MRI序列分类中类间差异细微和类内变化显著的问题 | 腹部MRI序列 | 医学影像分析 | NA | 深度学习 | CNN, Vision Transformer | MRI图像 | 公共腹部MRI序列分类数据集和私有数据集 |
464 | 2025-08-05 |
Pretraining-improved Spatiotemporal graph network for the generalization performance enhancement of traffic forecasting
2025-Jul-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-11375-2
PMID:40730627
|
研究论文 | 提出一种改进的预训练方法ImPreSTDG,用于增强交通预测模型的泛化性能和计算效率 | 引入Denoised Diffusion Probability Model (DDPM)和Mamba模块,分别用于增强长期时空依赖学习能力和高效处理长序列 | 实验仅在三个真实交通数据集上进行验证,可能需要更多数据集验证泛化性 | 解决现有交通预测模型在处理长期时空依赖和高计算成本方面的挑战 | 交通数据 | 机器学习 | NA | Denoised Diffusion Probability Model (DDPM), Selective State Space Model (SSM) | Graph Convolutional Networks (GCNs), ImPreSTDG | 时空数据 | 三个真实交通数据集 |
465 | 2025-08-05 |
Nucleotide-level circRNA-RBP binding sites prediction based on hybrid encoding scheme and enhanced feature extraction
2025-Jul-28, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107923
PMID:40753814
|
研究论文 | 提出了一种基于深度学习的框架circdpb,用于预测circRNA-RBP结合位点,具有核苷酸级别的精度 | 整合了one-hot和高斯调制位置编码来表示circRNA序列,使用扩张卷积特征金字塔(DCFP)和双向门控循环单元(BiGRU)增强特征提取 | 未提及具体在哪些疾病中的应用验证 | 提高circRNA-RBP结合位点预测的核苷酸级别精度 | circRNA与RNA结合蛋白(RBPs)的结合位点 | 生物信息学 | NA | 深度学习 | DCFP, BiGRU | RNA序列数据 | 37个基准数据集 |
466 | 2025-08-05 |
Learning Biophysical Dynamics with Protein Language Models
2025-Jul-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.11.617911
PMID:39464109
|
研究论文 | 本文介绍了两种蛋白质语言模型SeqDance和ESMDance,用于学习蛋白质的生物物理动态特性 | 首次将蛋白质动态特性整合到语言模型中,能够更全面地预测蛋白质行为和突变效应 | 模型训练依赖于分子动力学模拟和正态模式分析的数据,可能受到这些方法固有局限性的影响 | 开发能够捕捉蛋白质动态特性的深度学习模型 | 蛋白质的动态生物物理特性 | 机器学习 | NA | 分子动力学模拟, 正态模式分析 | 蛋白质语言模型(SeqDance, ESMDance) | 蛋白质序列, 结构动态数据 | 超过64,000种蛋白质 |
467 | 2025-08-05 |
Deep Learning for Staging Periodontitis Using Panoramic Radiographs
2025-Jul, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15269
PMID:39888112
|
研究论文 | 本研究利用深度学习模型自动标注解剖结构并分类牙周炎的放射学骨丧失阶段 | 采用目标检测模型自动标注解剖结构并分类牙周炎阶段,提高了诊断效率 | 模型在预测和真实值差异较小时的性能有待提高 | 提高牙周炎诊断和分类的效率 | 全景X光片中的牙齿 | 数字病理 | 牙周炎 | 深度学习 | 目标检测模型 | 图像 | 558张全景X光片,裁剪为7359颗牙齿 |
468 | 2025-08-05 |
Combined application of deep learning and conventional computer vision for kidney ultrasound image classification in chronic kidney disease: preliminary study
2025-Jun-15, Ultrasonography (Seoul, Korea)
DOI:10.14366/usg.25074
PMID:40755093
|
研究论文 | 本研究评估了结合深度学习和传统计算机视觉技术对慢性肾脏病(CKD)肾脏超声图像进行分类的可行性 | 结合深度学习和传统特征提取方法,提高了CKD分类的准确性 | 样本量较小(258个肾脏),且为回顾性研究 | 开发一种非侵入性的CKD诊断和监测辅助工具 | 肾脏超声图像 | 计算机视觉 | 慢性肾脏病 | 超声成像 | CNN | 图像 | 258个肾脏(124正常,134CKD) |
469 | 2025-08-05 |
InclusiViz : Visual Analytics of Human Mobility Data for Understanding and Mitigating Urban Segregation
2025-06, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2025.3567117
PMID:40327496
|
研究论文 | 介绍了一个名为InclusiViz的可视化分析系统,用于多层次分析城市隔离现象,并促进数据驱动的干预措施开发 | 提出了一种结合深度学习和可解释AI的新方法,用于预测不同社会群体的移动模式并揭示环境特征对隔离的影响 | 未明确提及具体样本量或数据收集的地理范围限制 | 理解和缓解城市隔离现象,促进更包容的城市规划 | 人类移动数据和城市隔离模式 | 可视化分析 | NA | 深度学习、可解释AI | 深度学习模型 | 人类移动数据 | NA |
470 | 2025-08-05 |
Physics-informed deep learning for infectious disease forecasting
2025-Apr-29, ArXiv
PMID:39876937
|
研究论文 | 本文提出了一种基于物理信息神经网络(PINNs)的新型传染病预测模型,旨在通过结合流行病学理论和数据来提高预测准确性 | 利用物理信息神经网络(PINNs)将疾病传播的动态系统表示融入损失函数,结合流行病学理论和数据,防止模型过拟合,并通过子网络考虑流动性、疫苗剂量等影响传播率的协变量 | 模型在加州州级COVID-19数据上表现良好,但未在其他地区或疾病上进行验证 | 提高传染病预测的准确性和方法,以支持公共卫生决策 | COVID-19在加州的数据,包括病例数、死亡数和住院数 | 机器学习 | 传染病 | 物理信息神经网络(PINNs) | PINN, RNN, LSTM, GRU, Transformer | 时间序列数据 | 加州州级COVID-19数据 |
471 | 2025-08-05 |
Performance of a Deep Learning Diabetic Retinopathy Algorithm in India
2025-03-03, JAMA network open
IF:10.5Q1
|
研究论文 | 评估印度Aravind眼科医院部署后自动视网膜疾病评估(ARDA)算法的临床性能 | 首次在印度大规模临床环境中评估AI算法对糖尿病视网膜病变(DR)和糖尿病黄斑水肿(DME)的检测性能 | 研究仅基于印度南部45个站点的数据,可能无法代表其他地区的情况 | 评估AI算法在真实临床环境中检测糖尿病视网膜病变的性能 | 糖尿病患者视网膜图像 | 数字病理 | 糖尿病视网膜病变 | 深度学习 | NA | 图像 | 4537名患者的4537张视网膜图像 |
472 | 2025-08-05 |
A deep learning approach to perform defect classification of freeze-dried product
2025-Feb-10, International journal of pharmaceutics
IF:5.3Q1
DOI:10.1016/j.ijpharm.2024.125127
PMID:39756597
|
研究论文 | 本文提出了一种基于深度学习的冻干产品缺陷分类方法 | 使用卷积神经网络处理高分辨率图像,开发了两种方法(基于补丁的方法和多标签分类)并进行比较,以实现更快、更可重复的质量控制 | 研究中仅使用了特定配方和工艺设置制备的样品,可能无法涵盖所有实际生产中的缺陷类型 | 提高冻干产品在连续生产线上质量控制的效率和准确性 | 冻干产品样品 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 多个连续冻干样品 |
473 | 2025-08-05 |
Machine learning outperforms the Canadian Triage and Acuity Scale (CTAS) in predicting need for early critical care
2025-01, CJEM
DOI:10.1007/s43678-024-00807-z
PMID:39560909
|
研究论文 | 本研究比较了机器学习模型与加拿大分诊和敏锐度量表(CTAS)在预测急诊科患者12小时内需要重症监护的能力 | 机器学习模型在预测急诊科患者需要早期重症监护方面优于传统的CTAS评分 | 需要未来研究验证这些机器学习模型在实际临床环境中的表现 | 改进急诊科分诊系统,提高对需要重症监护患者的识别能力 | 急诊科就诊患者 | 机器学习 | NA | 机器学习 | LASSO回归、梯度提升树和深度学习模型 | 临床数据 | 670,841次急诊就诊记录 |
474 | 2025-08-05 |
Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis
2024-Sep-01, Journal of glaucoma
IF:2.0Q2
DOI:10.1097/IJG.0000000000002428
PMID:38747721
|
meta-analysis | 该研究通过系统综述和荟萃分析,评估深度学习算法在前段光学相干断层扫描图像中检测青光眼患者房角关闭的准确性 | 首次通过荟萃分析证实深度学习算法在AS-OCT图像中检测房角关闭的高敏感性和特异性 | 仅纳入6项研究,样本量相对有限,可能存在发表偏倚 | 比较深度学习算法与房角镜检查在青光眼房角关闭诊断中的准确性 | 青光眼患者 | 数字病理学 | 青光眼 | AS-OCT | 深度学习算法(DLA) | 图像 | 5269名患者 |
475 | 2025-08-05 |
Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography
2024-04-01, Journal of glaucoma
IF:2.0Q2
DOI:10.1097/IJG.0000000000002359
PMID:38245813
|
研究论文 | 使用深度学习模型通过黄斑光学相干断层扫描(OCT)图像预测和检测青光眼视野进展 | 开发了一种基于自监督预训练的视觉变换器(ViT)模型,用于检测青光眼进展并预测未来进展 | 研究为回顾性队列研究,可能存在选择偏差 | 利用黄斑OCT图像预测和检测青光眼视野进展 | 青光眼患者的黄斑OCT图像 | 数字病理 | 青光眼 | 光学相干断层扫描(OCT) | ViT(视觉变换器) | 图像 | 预训练数据集包含151,389项黄斑OCT研究中的7,702,201张B扫描图像,进展检测任务包括828名患者的1534只眼的3902项黄斑OCT研究,进展预测任务包括784名患者的1205只眼的1346项黄斑OCT研究 |
476 | 2025-08-05 |
Deep learning in structural bioinformatics: current applications and future perspectives
2024-03-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae042
PMID:38701422
|
综述 | 本文探讨了深度学习在结构生物信息学中的变革性影响及其未来前景 | 详细介绍了深度学习在生物信息学中的显著应用,并从基础浅层神经网络到卷积、循环、人工和变压器神经网络等高级模型进行了清晰阐述 | 未具体提及研究的局限性 | 探讨深度学习在结构生物信息学中的应用及其未来发展 | 生物分子结构 | 结构生物信息学 | NA | 深度学习 | CNN, LSTM, GAN, transformer neural networks | 生物分子结构数据 | NA |
477 | 2025-08-05 |
Evaluating large language models for annotating proteins
2024-03-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae177
PMID:38706315
|
研究论文 | 本文提出并评估了一种基于迁移学习的新型协议,利用蛋白质大型语言模型(LLMs)来改进蛋白质域注释的预测 | 使用自监督学习在大型未注释数据集上训练的蛋白质LLMs,结合监督学习在小注释数据集上进行专门任务,显著提高了蛋白质家族分类的预测准确性 | 对于家族成员较少的蛋白质家族,训练数据量可能仍然不足 | 改进蛋白质域注释的自动预测方法 | UniProtKB数据库中的蛋白质序列 | 自然语言处理 | NA | 迁移学习、自监督学习、监督学习 | LLMs | 蛋白质序列数据 | UniProtKB数据库中的251百万蛋白质序列 |
478 | 2025-08-05 |
SC-Track: a robust cell-tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations
2024-03-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae192
PMID:38704671
|
research paper | 提出了一种名为SC-Track的新型细胞追踪算法,用于从多样化的细胞分割中生成准确的单细胞谱系 | SC-Track采用基于细胞分裂和运动动态生物学观察的分层概率缓存级联模型,能够在不同细胞分割质量、细胞形态外观和成像条件下保持稳健的细胞追踪性能 | 未提及具体局限性 | 开发一种能够处理噪声细胞分割和分类预测的鲁棒细胞追踪算法,以生成准确的单细胞谱系和分类 | 荧光时间推移显微镜图像中的单细胞 | digital pathology | NA | 深度学习 | CNN | image | 未提及具体样本数量 |
479 | 2025-08-05 |
Genotypic-phenotypic landscape computation based on first principle and deep learning
2024-03-27, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae191
PMID:38701420
|
研究论文 | 本文提出了一种基于第一性原理和深度学习的基因型-表型景观计算方法,通过Phenotypic-Embedding定理(P-E定理)和Transformer模型,实现了基因型与适应度的定量映射 | 提出了Phenotypic-Embedding定理(P-E定理),并开发了基于Transformer的预训练基础模型,用于准确模拟病毒的中性进化并预测免疫逃逸突变 | NA | 建立基因型与表型之间的定量关系,为理论和计算生物学研究提供新范式 | 基因型与表型的关系,特别是病毒的基因型与适应度的关系 | 计算生物学 | NA | 深度学习 | Transformer | 基因型和表型数据 | NA |
480 | 2025-08-05 |
Multimodal Deep Learning Classifier for Primary Open Angle Glaucoma Diagnosis Using Wide-Field Optic Nerve Head Cube Scans in Eyes With and Without High Myopia
2023-10-01, Journal of glaucoma
IF:2.0Q2
DOI:10.1097/IJG.0000000000002267
PMID:37523623
|
研究论文 | 介绍了一种基于光学相干断层扫描(OCT)的多模态深度学习分类模型,用于诊断有无高度近视的青光眼 | 该模型结合了纹理信息,在多模态模型中表现优于单模态模型及不含纹理信息的多模态模型 | 样本量相对有限,特别是高度近视组的样本数量较少 | 评估使用宽视野OCT视神经头立方扫描的多模态DL分类器在有无轴性高度近视眼中的诊断准确性 | 原发性开角型青光眼(POAG)患者和健康人的眼睛 | 数字病理学 | 青光眼 | OCT, 深度学习 | VGG-16, 多模态深度学习模型 | 图像 | 371例无高度近视的POAG眼和86例健康眼,92例高度近视POAG眼和44例健康眼 |