本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461 | 2025-04-25 |
Unveiling Multi-Scale Architectural Features in Single-Cell Hi-C Data Using scCAFE
2025-Apr-24, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202416432
PMID:40270467
|
research paper | 介绍了一种名为scCAFE的深度学习模型,用于在单细胞水平上检测多尺度染色质结构特征 | scCAFE提供了一个统一框架,用于注释单个细胞中的染色质环、TAD样结构域(TLDs)和区室,优于之前的scHi-C环检测方法 | NA | 分析单细胞基因组结构并实现基于3D基因组特征的精确细胞类型注释 | 单细胞Hi-C数据中的染色质结构特征 | computational biology | NA | single-cell Hi-C (scHi-C) | deep learning model (scCAFE) | genomic data | NA |
462 | 2025-04-25 |
Mixed Outcomes in Recombination Rates After Domestication: Revisiting Theory and Data
2025-Apr-24, Molecular ecology
IF:4.5Q1
DOI:10.1111/mec.17773
PMID:40271548
|
研究论文 | 本文探讨了驯化过程中基因组重组率的变化,结合理论、实验室实验和数据分析,比较了家养动物与其野生祖先的重组率 | 利用群体测序数据和深度学习方法推断基因组范围内的重组率,提供了鸡/红原鸡、绵羊/摩弗伦羊和山羊/野山羊的新比较结果 | 研究结果在不同物种间不一致,未能提供驯化导致基因组重组率普遍增加的统一证据 | 验证驯化过程是否间接导致基因组重组率增加的假说 | 家养动物(鸡、绵羊、山羊)及其野生祖先(红原鸡、摩弗伦羊、野山羊) | 基因组学 | NA | 群体测序、深度学习 | 深度学习 | 基因组测序数据 | 多个物种的比较(鸡/红原鸡、绵羊/摩弗伦羊、山羊/野山羊) |
463 | 2025-04-25 |
Artificial Intelligence in Panoramic Radiography Interpretation: A Glimpse into the State-of-the-Art Radiologic Examination Method
2025-Apr-24, International journal of computerized dentistry
IF:1.8Q2
DOI:10.3290/j.ijcd.b6173229
PMID:40272192
|
研究论文 | 本研究开发了一种基于YOLO-v8深度学习模型的人工智能系统,用于全景X光片中多种牙齿问题和解剖结构的准确评估和分割 | 开发了一个多类别诊断模型,能够同时检测和分割全景X光片中的33种不同牙齿状况和解剖结构,而现有研究通常单独处理这些条件 | 研究未提及模型在不同设备获取的X光片上的泛化能力测试 | 开发能够准确评估和分割全景X光片中各种牙齿问题和解剖结构的深度学习模型 | 全景X光片中的牙齿问题、牙齿修复体、牙科植入物、解剖标志、牙周状况、颌骨病理和根尖周病变 | 数字病理 | 牙科疾病 | 深度学习 | YOLO-v8 | 图像 | 未明确说明样本数量,但涉及33种不同条件的标注 |
464 | 2025-04-25 |
Role of artificial intelligence in advancing immunology
2025-Apr-24, Immunologic research
IF:3.3Q3
DOI:10.1007/s12026-025-09632-7
PMID:40272607
|
综述 | 本文探讨了人工智能(AI)在免疫学领域的革命性作用,特别是在疫苗开发、免疫治疗和过敏治疗方面的应用 | AI通过分析大量基因组序列和蛋白质结构,帮助识别潜在疫苗候选物并预测机体对不同抗原的反应,同时为癌症患者提供个性化免疫治疗方案 | NA | 探讨AI在免疫学领域的应用及其对医学研究和医疗保健的推动作用 | 免疫学领域,包括疫苗开发、免疫治疗、过敏治疗及免疫疾病诊断 | 人工智能在生物医学中的应用 | 自身免疫疾病、免疫缺陷、过敏及癌症 | 机器学习和深度学习 | NA | 基因组序列、蛋白质结构、患者历史和实验室结果 | NA |
465 | 2025-04-25 |
Clinical Implementation of Sixfold-Accelerated Deep Learning Super-Resolution Knee MRI in Under 5 Minutes: Arthroscopy-Validated Diagnostic Performance
2025-Apr-23, AJR. American journal of roentgenology
DOI:10.2214/AJR.25.32878
PMID:40266704
|
研究论文 | 本研究验证了采用深度学习超分辨率图像重建技术的六倍加速膝关节MRI在临床中的诊断性能 | 首次在临床中验证了六倍加速的深度学习超分辨率膝关节MRI技术,并与关节镜手术结果进行对照 | 研究为回顾性设计,样本量相对有限(124例患者) | 验证六倍加速的深度学习超分辨率膝关节MRI技术的临床诊断效能 | 膝关节疼痛的成年患者 | 数字病理 | 膝关节疾病 | 深度学习超分辨率图像重建,并行成像(PI),同步多层采集(SMS) | 深度学习(未指定具体模型) | MRI图像 | 124名成年患者(79男,45女) |
466 | 2025-04-25 |
Validating Emotion Analysis on Social Media Text for Detecting Psychological Distress: A Cross-Sectional Survey
2025-Apr-23, Issues in mental health nursing
IF:1.7Q3
DOI:10.1080/01612840.2025.2488328
PMID:40266789
|
研究论文 | 本研究探讨了社交媒体文本中自我报告的心理困扰与情绪之间的关系,使用基于深度学习的情绪分析模型 | 使用KoBERT模型对社交媒体文本进行七种情绪分类,并验证其与心理困扰的关联 | 样本量较小(87名参与者),且仅限于Instagram和Threads平台的数据 | 验证情绪分析作为通过社交媒体早期检测和监测心理困扰的工具 | 社交媒体用户及其文本帖子 | 自然语言处理 | 心理健康 | 深度学习 | KoBERT | 文本 | 87名参与者的2610个句子 |
467 | 2025-04-25 |
Unsupervised non-small cell lung cancer tumor segmentation using cycled generative adversarial network with similarity-based discriminator
2025-Apr-23, Journal of applied clinical medical physics
IF:2.0Q3
DOI:10.1002/acm2.70107
PMID:40266997
|
research paper | 该研究提出了一种无监督的非小细胞肺癌肿瘤分割方法smic-GAN,通过使用基于相似性的生成对抗网络和循环策略进行训练,无需依赖手动标注数据 | 提出了一种无监督的肿瘤分割网络smic-GAN,不依赖任何手动标注,减少了训练数据准备的工作量 | 虽然性能与有监督方法相当,但并未明确指出其在复杂病例或不同数据分布下的泛化能力 | 开发一种无需手动标注的无监督肿瘤分割方法,以减轻数据准备负担 | 非小细胞肺癌患者的CT扫描图像 | digital pathology | lung cancer | CT扫描 | GAN | image | 609例肺癌患者的CT扫描(504训练,35验证,70测试) |
468 | 2025-04-25 |
FedOpenHAR: Federated Multitask Transfer Learning for Sensor-Based Human Activity Recognition
2025-Apr-23, Journal of computational biology : a journal of computational molecular cell biology
IF:1.4Q2
DOI:10.1089/cmb.2024.0631
PMID:40267073
|
研究论文 | 介绍FedOpenHAR框架,探索在联邦学习环境中进行多任务迁移学习,用于传感器基础的人类活动识别和设备位置识别任务 | 提出FedOpenHAR框架,结合联邦学习和迁移学习,支持多任务处理,并允许新客户端利用现有共同层进行训练 | 需要处理不同数据集中可能仅包含部分标签类型的情况,模型鲁棒性面临挑战 | 开发适用于传感器基础的人类活动识别和设备位置识别的分布式机器学习方法 | 穿戴和移动设备收集的运动传感器数据 | 机器学习 | NA | 联邦学习,迁移学习 | DeepConvLSTM | 传感器数据 | OpenHAR框架中的十个较小数据集 |
469 | 2025-04-25 |
Improvement of deep learning-based dose conversion accuracy to a Monte Carlo algorithm in proton beam therapy for head and neck cancers
2025-Apr-23, Journal of radiation research
IF:1.9Q3
DOI:10.1093/jrr/rraf019
PMID:40267259
|
研究论文 | 本研究旨在通过图像旋转技术和缩放增强提高基于深度学习的质子束治疗中从铅笔束到蒙特卡洛算法的剂量转换精度 | 引入了图像旋转技术和缩放增强方法,显著提高了深度学习模型在质子束治疗中的剂量转换精度 | 研究仅针对头颈癌患者,样本量相对较小(85例患者) | 提高质子束治疗中剂量计算的准确性 | 头颈癌患者 | 医学影像分析 | 头颈癌 | 质子束治疗(PBT) | 深度学习模型 | CT图像和剂量数据 | 85例头颈癌患者(101个训练/验证计划,11个测试计划) |
470 | 2025-04-25 |
Deep Learning Model for Histologic Diagnosis of Dysplastic Barrett's Esophagus: Multisite Cohort External Validation
2025-Apr-23, The American journal of gastroenterology
DOI:10.14309/ajg.0000000000003495
PMID:40267276
|
研究论文 | 本文通过外部验证一种深度学习模型(BEDDLM),用于在巴雷特食管(BE)组织学切片上诊断不典型增生程度 | 首次在多个外部学术中心验证了深度学习模型(BEDDLM)在巴雷特食管不典型增生诊断中的准确性,并采用了cGANs进行染色标准化和YOLO与ResNet101结合的集成方法 | 样本量相对有限(489张全切片图像),且主要来自男性患者(84.7%) | 提高巴雷特食管不典型增生的诊断准确性,减少人工病理读片中的观察者间变异和过度诊断 | 巴雷特食管患者的组织学切片(非不典型增生、低级别不典型增生和高级别不典型增生) | 数字病理学 | 食管腺癌 | 全切片图像分析、cGANs染色标准化 | YOLO与ResNet101的集成模型 | 图像 | 489张全切片图像(232例非不典型增生,117例低级别不典型增生,140例高级别不典型增生) |
471 | 2025-04-25 |
Improved Pine Wood Nematode Disease Diagnosis System Based on Deep Learning
2025-Apr-23, Plant disease
IF:4.4Q1
DOI:10.1094/PDIS-06-24-1221-RE
PMID:40267359
|
research paper | 提出了一种基于深度学习的松材线虫病诊断系统,通过荧光识别技术提高检测效率和准确性 | 首次将荧光识别技术应用于松材线虫病检测,并开发了基于深度学习的专用荧光检测系统,改进了YOLOv5模型,显著提高了大尺寸图像的识别准确率 | 未提及系统在不同环境条件下的稳定性和适应性测试结果 | 开发快速有效的松材线虫病检测方法以减少松树砍伐和疾病传播 | 松材线虫病 | computer vision | plant disease | fluorescence recognition, deep learning | YOLOv5, YOLOv10, Res2Net, SimAM, Bi-FPN | image | 未明确提及具体样本数量 |
472 | 2025-04-25 |
Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study
2025-Apr-23, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/60367
PMID:40267476
|
研究论文 | 本研究开发并验证了使用多模态机器学习算法预测早产儿视网膜病变(ROP)抗血管内皮生长因子(anti-VEGF)治疗后复发的模型 | 首次构建了结合传统机器学习、深度学习和融合模型的预测系统,用于ROP治疗后复发的预测 | 样本量相对有限(239例),且仅来自3家医院 | 开发预测ROP抗VEGF治疗后复发的模型,优化治疗方案 | 接受抗VEGF治疗的ROP婴儿 | 机器学习 | 早产儿视网膜病变 | 多模态机器学习算法 | 传统机器学习模型、深度学习模型、融合模型 | 临床数据 | 239例(90例复发,149例未复发) |
473 | 2025-04-25 |
On factors that influence deep learning-based dose prediction of head and neck tumors
2025-Apr-23, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/adcfeb
PMID:40267938
|
研究论文 | 本研究探讨了影响基于深度学习的头颈部肿瘤放疗剂量预测模型的关键因素 | 系统分析了输入和剂量网格分辨率、输入类型、损失函数、模型架构和噪声对模型性能的影响,并发现高分辨率输入、多类型输入组合及特定损失函数的整合能显著提升预测准确性 | 研究仅针对头颈部肿瘤,且对抗噪声的鲁棒性仍有提升空间 | 评估深度学习模型在头颈部癌症放疗剂量预测中的准确性、鲁棒性和计算效率 | 头颈部肿瘤放疗剂量预测 | 数字病理 | 头颈部癌症 | 深度学习 | SwinUNETR | CT图像、计划靶区(PTVs)和风险器官(OARs) | 公共数据集(OpenKBP)和内部临床数据集(LUMC) |
474 | 2025-04-25 |
Semantic Consistency Network with Edge Learner and Connectivity Enhancer for Cervical Tumor Segmentation from Histopathology Images
2025-Apr-23, Interdisciplinary sciences, computational life sciences
DOI:10.1007/s12539-025-00691-w
PMID:40268829
|
研究论文 | 提出了一种名为ERNet的端到端语义一致性网络,用于从组织病理学图像中分割宫颈肿瘤 | ERNet结合了边缘学习器和连接增强器,有效提升了模型对多形态肿瘤边缘的学习和表示能力,以及分割掩模的像素连接性 | 虽然模型在宫颈肿瘤图像上表现良好,但在其他类型肿瘤上的泛化能力仅通过喉部肿瘤图像进行了初步验证 | 提高宫颈肿瘤在组织病理学图像中的分割准确性,以辅助诊断和预后 | 宫颈肿瘤的组织病理学图像 | 数字病理学 | 宫颈癌 | 深度学习 | CNN | 图像 | NA |
475 | 2025-04-25 |
Evaluating and mitigating bias in AI-based medical text generation
2025-Apr-23, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-025-00789-7
PMID:40269315
|
研究论文 | 本文研究了基于AI的医学文本生成中的偏见问题,并提出了一种减少偏见的算法 | 首次在医学文本生成领域系统地研究公平性问题,并提出了一种选择性优化弱势群体的算法以减少偏见 | 研究仅针对医学文本生成领域,未涉及其他AI应用领域 | 评估并减轻基于AI的医学文本生成中的偏见 | 基于深度学习的AI系统在医学文本生成中的应用 | 自然语言处理 | NA | 深度学习 | 深度学习模型 | 文本 | 多种数据集和模态 |
476 | 2025-04-25 |
Response to the Letter to the Editor: "A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia"
2025-Apr-23, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345251329356
PMID:40269482
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
477 | 2025-04-25 |
An effective model of hybrid adaptive deep learning with attention mechanism for healthcare data analysis in blockchain-based secure transmission over IoT
2025-Apr-23, Network (Bristol, England)
DOI:10.1080/0954898X.2025.2492375
PMID:40269520
|
研究论文 | 本文提出了一种结合混合自适应深度学习和注意力机制的有效模型,用于区块链安全传输物联网中的医疗数据分析 | 结合区块链技术和混合自适应深度学习模型,引入FUPOA进行参数优化和密钥生成,提高了数据传输的安全性和隐私性 | 未提及具体实验数据集规模和实际部署中的性能表现 | 解决医疗数据在物联网传输中的安全性和隐私性问题 | 医疗数据的安全传输和存储 | 机器学习 | NA | 混合自适应深度学习方法(HADL-AM), FUPOA优化算法 | 深度学习模型(未明确具体类型) | 医疗数据 | 未明确说明具体样本数量 |
478 | 2025-04-25 |
deep-Sep: a deep learning-based method for fast and accurate prediction of selenoprotein genes in bacteria
2025-Apr-22, mSystems
IF:5.0Q1
DOI:10.1128/msystems.01258-24
PMID:40062874
|
research paper | 开发了一种基于深度学习的算法deep-Sep,用于快速准确地预测细菌基因组中的硒蛋白基因 | 使用Transformer-based神经网络架构构建最优模型,结合同源搜索策略减少假阳性,显著优于现有方法 | 未明确提及算法在极端复杂或高度变异细菌基因组中的表现 | 开发高效工具以准确识别细菌基因组中的硒蛋白基因 | 细菌基因组序列 | machine learning | NA | 深度学习 | Transformer-based neural network | 基因组序列数据 | 20个细菌基因组作为独立测试数据集 |
479 | 2025-04-25 |
Combining diffusion and transformer models for enhanced promoter synthesis and strength prediction in deep learning
2025-Apr-22, mSystems
IF:5.0Q1
DOI:10.1128/msystems.00183-25
PMID:40105319
|
研究论文 | 本研究结合扩散模型和transformer模型,用于增强合成启动子的设计与强度预测 | 首次将扩散模型应用于合成启动子设计,并结合transformer模型进行强度预测,相比传统方法表现出更高的性能 | 研究仅针对模型细菌和蓝藻细菌中的启动子,未验证在其他生物系统中的适用性 | 开发高效的合成启动子设计与预测方法,以优化外源基因表达和代谢途径效率 | 合成启动子序列及其转录活性 | 合成生物学 | NA | 深度学习 | 扩散模型, transformer | 生物序列数据 | 未明确说明样本数量 |
480 | 2025-04-25 |
An end-to-end neural network for 4D cardiac CT reconstruction using single-beat scans
2025-Apr-22, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/adcafb
PMID:40203865
|
研究论文 | 提出了一种基于深度学习的端到端重建框架,用于单次心跳快速CT扫描的动态心脏成像 | 使用单次心跳扫描数据,无需多次扫描,减少辐射暴露,尤其适用于心律不齐患者 | 模型训练依赖于模拟投影数据,可能在实际临床应用中存在差异 | 减少心脏CT成像中的运动伪影,提高心脏疾病的检测和诊断准确性 | 心脏CT成像 | 数字病理 | 心血管疾病 | CT扫描 | 端到端神经网络 | 图像 | 30名真实患者的模拟投影数据 |