本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
461 | 2025-06-01 |
Letter to the Editor on "Deep Learning Algorithms to Predict Differential Renal Function <40% in Unilateral Hydronephrosis Based on Key Parameters of Urinary Tract Ultrasound"
2025-May-28, Urology
IF:2.1Q2
DOI:10.1016/j.urology.2025.05.044
PMID:40447158
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
462 | 2025-06-15 |
Commercial Products Using Generative Artificial Intelligence Include Ambient Scribes, Automated Documentation and Scheduling, Revenue Cycle Management, Patient Engagement and Education, and Prior Authorization Platforms
2025-May-24, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
IF:4.4Q1
DOI:10.1016/j.arthro.2025.05.021
PMID:40419172
|
research paper | 本文探讨了生成式人工智能在医疗保健领域的商业应用及其对临床工作流程的变革 | 重点介绍了大型语言模型(LLMs)在医疗保健中的新兴商业应用,如环境记录员、自动化文档和调度等 | 当前限制包括缺乏监管监督、现有偏见、与电子健康记录的互操作性不一致,以及由于对LLM输出缺乏信心导致的医生和利益相关者支持不足 | 研究生成式人工智能在医疗保健领域的应用及其潜在影响 | 商业生成式人工智能产品及其在医疗保健中的应用 | natural language processing | NA | large language models (LLMs), deep learning | LLM | text | NA |
463 | 2025-06-15 |
Federated prediction for scalable and privacy-preserved knowledge-based planning in radiotherapy
2025-May-20, ArXiv
PMID:40470470
|
研究论文 | 开发了一个名为FedKBP+的联邦学习平台,用于放射治疗计划中的预测任务,以提高效率和保护数据隐私 | 提出了一个全面的联邦学习平台FedKBP+,支持集中式和完全分散式的联邦学习策略,并展示了其在多种预测任务中的高效性和鲁棒性 | 未明确提及具体局限性,但可能涉及在实际临床环境中的进一步验证需求 | 解决放射治疗计划中数据稀缺和异构性导致的模型泛化能力不足问题,同时保护患者数据隐私 | 放射治疗计划中的预测任务,包括3D剂量预测、脑肿瘤分割和器官分割 | 机器学习 | 脑肿瘤 | 联邦学习(FL) | SA-Net, FedAvg, FedProx, Gossip Contrastive Mutual Learning | 医学影像数据 | 340例(OpenKBP Challenge)、227例(BraTS challenge)、384例(PanSeg dataset) |
464 | 2025-06-15 |
VADEr: Vision Transformer-Inspired Framework for Polygenic Risk Reveals Underlying Genetic Heterogeneity in Prostate Cancer
2025-May-18, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.05.16.25327672
PMID:40463543
|
research paper | 提出了一种基于Vision Transformer的框架VADEr,用于捕捉基因数据中的局部和全局交互,以预测前列腺癌的多基因风险 | 结合自然语言处理和计算机视觉技术,利用Vision Transformer架构捕捉基因变异间的复杂交互,并引入DARTH评分提供可解释的疾病风险驱动因素 | 研究仅针对前列腺癌,未验证在其他复杂疾病中的适用性 | 开发一种能够捕捉基因变异间复杂交互的多基因风险预测框架 | 前列腺癌(PCa)的多基因风险预测 | machine learning | prostate cancer | Vision Transformer (ViT) | Transformer | genetic data | NA |
465 | 2025-06-15 |
ProtFun: A Protein Function Prediction Model Using Graph Attention Networks with a Protein Large Language Model
2025-May-17, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.13.653854
PMID:40463264
|
研究论文 | 提出了一种名为ProtFun的多模态深度学习架构,用于预测蛋白质功能 | 结合蛋白质大型语言模型(LLM)嵌入和图注意力网络(GAT)来学习蛋白质嵌入,并与InterPro的蛋白质特征表示整合 | 未提及具体局限性 | 开发计算方法来自动预测蛋白质功能 | 蛋白质 | 机器学习 | NA | 蛋白质大型语言模型(LLM)、图注意力网络(GAT) | GAT | 蛋白质序列数据 | 三个基准数据集 |
466 | 2025-06-15 |
Tracking Conditioned Fear in Pair-Housed Mice Using Deep Learning and Real-Time Cue Delivery
2025-May-15, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.10.653260
PMID:40463247
|
研究论文 | 该研究开发了一种基于深度学习的开源软件,用于在家庭笼环境中实时追踪配对饲养小鼠的条件恐惧行为 | 结合开源软件和深度学习姿态估计技术,在生态相关环境中研究小鼠的条件恐惧行为 | 研究仅关注小鼠模型,结果向人类PTSD的转化需要进一步验证 | 开发新工具研究创伤后应激障碍(PTSD)相关的恐惧行为 | 配对饲养的小鼠 | 数字病理学 | 创伤后应激障碍(PTSD) | 深度学习姿态估计 | 深度学习模型 | 视频 | 多对小鼠(具体数量未明确说明) |
467 | 2025-06-15 |
Distinct actin microfilament localization during early cell plate formation through deep learning-based image restoration
2025-May-08, Plant cell reports
IF:5.3Q1
DOI:10.1007/s00299-025-03498-7
PMID:40335746
|
研究论文 | 通过基于深度学习的图像恢复技术,实现了高分辨率4D成像,揭示了Lifeact-RFP标记的肌动蛋白微丝在细胞板形成初期的独特定位及其作用 | 利用深度学习进行图像恢复,实现了最小光损伤的高分辨率4D成像,揭示了两种不同标记的肌动蛋白微丝在细胞板形成初期的不同定位模式 | 研究仅使用了转基因烟草BY-2细胞,可能不适用于其他植物细胞类型 | 探究肌动蛋白微丝在细胞板形成初期的定位和功能 | 转基因烟草BY-2细胞 | 计算机视觉 | NA | 深度学习图像恢复技术 | 深度学习 | 图像 | 转基因烟草BY-2细胞 |
468 | 2025-06-15 |
Predicting Respiratory Disease Mortality Risk Using Open-Source AI on Chest Radiographs in an Asian Health Screening Population
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.240628
PMID:40172326
|
research paper | 评估开源深度学习算法CXR-Lung-Risk在亚洲健康筛查人群中预测呼吸系统疾病死亡风险的预后价值 | 使用开源深度学习算法CXR-Lung-Risk对亚洲人群进行呼吸系统疾病死亡风险分层,并通过纵向分析探索风险轨迹 | 单中心回顾性研究,样本量虽大但仅来自一个中心,可能影响结果的普遍性 | 评估CXR-Lung-Risk算法在预测呼吸系统疾病死亡风险中的预后价值 | 亚洲健康筛查人群的胸部X光片 | digital pathology | lung cancer | deep learning | CXR-Lung-Risk | image | 36,924名个体(中位年龄58岁,22,352名男性) |
469 | 2025-06-15 |
Unsupervised Deep Learning for Blood-Brain Barrier Leakage Detection in Diffuse Glioma Using Dynamic Contrast-enhanced MRI
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.240507
PMID:40172325
|
研究论文 | 开发了一种无监督深度学习框架,用于在弥漫性胶质瘤中通过动态对比增强MRI检测血脑屏障泄漏,无需药代动力学模型和动脉输入函数估计 | 采用基于自动编码器的异常检测方法,通过重构残差识别一维体素级时间序列异常信号,并将其分为残余泄漏信号和残余血管信号 | 研究为回顾性研究,可能存在选择偏差 | 开发一种无需药代动力学模型和动脉输入函数估计的血脑屏障泄漏检测方法 | 弥漫性胶质瘤患者 | 数字病理学 | 胶质瘤 | 动态对比增强MRI | 自动编码器 | MRI图像 | 274名患者(平均年龄54.4岁±14.6,其中164名男性) |
470 | 2025-06-15 |
Adaptive Dual-Task Deep Learning for Automated Thyroid Cancer Triaging at Screening US
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.240271
PMID:40202416
|
研究论文 | 开发了一种自适应双任务深度学习模型(ThyNet-S),用于在超声筛查中检测和分类甲状腺病变 | 通过动态整合像素级特征分析和深度语义特征分析,实现了甲状腺病变的自动检测和分类,并优化了临床决策 | 研究为回顾性研究,可能受到数据选择和时间的限制 | 提高甲状腺癌筛查的效率和准确性 | 甲状腺超声图像 | 数字病理 | 甲状腺癌 | 超声筛查 | 自适应双任务深度学习模型(ThyNet-S) | 图像 | 35,008张甲状腺超声图像,来自23,294次检查 |
471 | 2025-06-15 |
Deep Anatomical Federated Network (Dafne): An Open Client-Server Framework for Continuous, Collaborative Improvement of Deep Learning-based Medical Image Segmentation
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.240097
PMID:40237599
|
research paper | 介绍并评估了Dafne,一个免费可用的去中心化协作深度学习系统,用于通过联邦增量学习对放射影像进行语义分割 | 提出了一个开放的客户端-服务器框架,支持持续协作改进基于深度学习的医学图像分割 | NA | 开发并评估一个去中心化的协作深度学习系统,用于提高放射影像的语义分割准确性 | 放射影像的语义分割 | digital pathology | NA | federated incremental learning | deep learning | image | 38 MRI数据集和639个实际使用案例 |
472 | 2025-05-01 |
Predicting Mortality with Deep Learning: Are Metrics Alone Enough?
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.250224
PMID:40304577
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
473 | 2025-05-29 |
Pixels to Prognosis: Using Deep Learning to Rethink Cardiac Risk Prediction from CT Angiography
2025-05, Radiology. Artificial intelligence
DOI:10.1148/ryai.250260
PMID:40434277
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
474 | 2025-06-15 |
Gene expression inference based on graph neural networks using L1000 data
2025-May-01, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf273
PMID:40505083
|
研究论文 | 本研究探讨了基于图神经网络(GNN)的基因表达推断方法,使用L1000数据,展示了其在预测基因表达值和基于表达的基因排序上的优越性 | 首次将图神经网络应用于基因表达推断,相比传统线性回归和非线性非GNN模型,GNN模型在减少10倍信息需求的同时达到可比性能 | 未明确提及具体的数据集规模限制或模型在特定生物环境下的适用性限制 | 探索非线性模型,特别是基于图结构的模型,在基因表达推断中的有效性 | 基因表达数据 | 生物信息学 | NA | L1000 | GNN | 基因表达数据 | 超过一百万种不同条件下的基因表达数据 |
475 | 2025-06-15 |
AI-Driven Advancements in Bioinformatics: Transforming Healthcare and Science
2025-May, Journal of pharmacy & bioallied sciences
DOI:10.4103/jpbs.jpbs_389_25
PMID:40511171
|
review | 本文回顾了AI在生物信息学中的关键应用及其对医疗实践和科学研究的潜在影响 | 探讨了AI在基因组和蛋白质结构预测、药物发现算法及诊断解决方案中的创新应用 | 存在数据质量、模型可解释性不明确及伦理问题等限制 | 评估AI在生物信息学中的基础方法及其在医疗和科学研究中的应用 | 基因组、蛋白质结构、药物发现算法和诊断解决方案 | 生物信息学 | NA | 机器学习、深度学习 | NA | 生物数据 | NA |
476 | 2025-06-15 |
Artificial intelligence demonstrates potential to enhance orthopaedic imaging across multiple modalities: A systematic review
2025-Apr, Journal of experimental orthopaedics
IF:2.0Q2
DOI:10.1002/jeo2.70259
PMID:40337671
|
系统综述 | 本文系统评估了人工智能在骨科影像学中的应用效果和可靠性,重点关注其对诊断准确性、图像分割和操作效率的影响 | 首次系统比较了不同AI模型在多种骨科影像模态中的临床效能和实用性 | 现有文献缺乏全面的统计分析和随机对照试验,需要进一步临床验证 | 评估AI在骨科影像学中的应用效果和可靠性 | 骨科影像学中的AI应用 | 医学影像分析 | 骨科疾病 | 机器学习 | CNN | 医学影像 | 11,990,643张来自多种诊断仪器的影像 |
477 | 2025-06-15 |
Applying Conformal Prediction to a Deep Learning Model for Intracranial Hemorrhage Detection to Improve Trustworthiness
2025-03, Radiology. Artificial intelligence
DOI:10.1148/ryai.240032
PMID:39601654
|
research paper | 该研究应用保形预测技术于深度学习模型,以提高颅内出血检测的可信度 | 使用Mondrian保形预测(MCP)增强深度学习模型,使其能够识别具有挑战性的病例 | 研究基于回顾性数据,样本量相对较小(491例CT扫描) | 提高深度学习模型在颅内出血检测中的可信度和准确性 | 非对比头部CT扫描图像 | digital pathology | intracranial hemorrhage | deep learning, Mondrian conformal prediction | CNN | CT图像 | 491例非对比头部CT扫描(来自146名患者) |
478 | 2025-06-15 |
NNFit: A Self-Supervised Deep Learning Method for Accelerated Quantification of High-Resolution Short-Echo-Time MR Spectroscopy Datasets
2025-03, Radiology. Artificial intelligence
DOI:10.1148/ryai.230579
PMID:39812584
|
research paper | 开发并评估了一种名为NNFit的自监督深度学习方法,用于加速高分辨率短回波时间MR光谱数据集的量化 | 提出了一种自监督深度学习方法NNFit,用于加速高分辨率短回波时间MR光谱数据集的量化,解决了传统光谱量化方法在临床工作流程中的计算瓶颈 | 研究为回顾性研究,样本量相对较小,且仅针对特定疾病(胶质母细胞瘤和重度抑郁症)进行了测试 | 开发一种快速、高效的光谱量化方法,以优化临床工作流程 | 高分辨率短回波时间MR光谱数据集 | 医学影像分析 | 胶质母细胞瘤, 重度抑郁症 | 短回波时间回波平面光谱成像(EPSI) | 自监督深度学习 | MR光谱数据 | 89次扫描(来自胶质母细胞瘤和重度抑郁症临床试验),训练数据集包含685,000个光谱(20名参与者,60次扫描),测试数据集包含260,000个光谱(12名参与者,29次扫描) |
479 | 2025-06-15 |
Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition
2025-03, Radiology. Artificial intelligence
DOI:10.1148/ryai.240353
PMID:39812583
|
研究论文 | 本研究探讨了通过Tucker分解减少基于3D CT的多器官分割模型TotalSegmentator的计算量 | 首次将Tucker分解应用于医学图像分割模型的压缩,显著减少了模型参数和计算量,同时保持分割精度 | 不同GPU架构上的实际加速效果存在差异,在性能较低的硬件上加速效果更明显 | 降低医学图像分割模型的计算需求 | TotalSegmentator模型(基于nnU-Net的117个解剖结构自动分割模型) | 数字病理 | NA | Tucker分解 | nnU-Net | 3D CT图像 | 1228个分割CT扫描(训练集)+89个CT扫描(测试集) |
480 | 2025-06-15 |
A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma
2025-02, Radiology. Artificial intelligence
DOI:10.1148/ryai.230544
PMID:39812582
|
research paper | 开发并评估了一种基于深度学习的预后模型,用于预测局部晚期鼻咽癌(LA-NPC)患者在诱导化疗前后的生存情况 | 使用图卷积神经网络(GCN)结合放射组学和临床因素构建预后模型,显著提高了预测疾病无进展生存期(DFS)的准确性 | 研究为回顾性多中心设计,可能存在选择偏倚,且未明确模型在其他人群中的泛化能力 | 预测局部晚期鼻咽癌患者的生存预后并指导风险适应性治疗 | 1039例局部晚期鼻咽癌患者(男779例,女260例,平均年龄44±11岁) | digital pathology | nasopharyngeal carcinoma | MRI | graph convolutional neural networks (GCN) | MRI图像及临床数据 | 1039例患者(训练/测试队列未明确拆分) |