深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 28281 篇文献,本页显示第 461 - 480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
461 2025-07-11
Quantitative computed tomography imaging classification of cement dust-exposed patients-based Kolmogorov-Arnold networks
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 本研究利用Kolmogorov-Arnold网络(KANs)对水泥粉尘暴露患者的定量计算机断层扫描(QCT)影像数据进行分类,以提高职业健康评估中的呼吸系统疾病早期检测 首次将Kolmogorov-Arnold网络(KANs)应用于QCT影像数据的分类,显著提高了分类性能,并通过SHAP分析增强了模型的可解释性 研究仅针对水泥粉尘暴露患者,可能不适用于其他类型的粉尘或污染物暴露 提高职业健康评估中水泥粉尘暴露引起的呼吸系统疾病的早期检测 609名个体(311名水泥粉尘暴露患者和298名健康对照)的QCT影像数据 数字病理 呼吸系统疾病 定量计算机断层扫描(QCT) Kolmogorov-Arnold网络(KANs) 影像 609名个体(311名患者和298名对照)
462 2025-07-11
ECG synthesis for cardiac arrhythmias: Integrating self-supervised learning and generative adversarial networks
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 本文提出了一种结合自监督学习和生成对抗网络的心电图合成方法,用于生成逼真的心律失常信号 提出了一种名为ECGAN的新型条件生成架构,整合了自监督学习和生成对抗网络,能够调节心电图记录的概率分布 未提及具体的数据集规模限制或模型泛化能力的局限性 开发一种能够生成逼真心电图信号的方法,以解决标记临床数据不足和患者匿名化问题 心电图时间序列 机器学习 心血管疾病 生成对抗网络(GAN), 自监督学习 ECGAN (生成对抗网络) 时间序列数据(心电图) 使用了MIT-BIH、BIDMC和PTB数据集,但未提及具体样本数量
463 2025-07-11
VAE-GANMDA: A microbe-drug association prediction model integrating variational autoencoders and generative adversarial networks
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 提出了一种结合变分自编码器(VAE)和生成对抗网络(GAN)的模型VAE-GANMDA,用于预测微生物-药物关联 通过融合VAE和GAN学习数据的非线性流形特征,并改进VAE生成模块,整合CBAM和高斯核函数,增强特征提取能力 未提及具体的数据集规模限制或模型泛化能力的局限性 开发一种高效且经济的微生物-药物关联预测方法 微生物和药物之间的关联 机器学习 NA VAE, GAN, CBAM, 高斯核函数, SVD, k-means++ VAE-GANMDA (结合VAE和GAN的模型), MLP 微生物-药物关联数据 未明确提及具体样本数量
464 2025-07-11
Interactive prototype learning and self-learning for few-shot medical image segmentation
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 提出了一种新的交互式原型学习和自学习网络,用于解决医学图像分割中的少样本学习问题 通过深度编码-解码模块、交互式原型学习模块和查询特征引导的自学习模块,解决了类内不一致性和类间相似性带来的分割挑战 未明确提及具体局限性 提高医学图像分割在少样本学习场景下的性能和泛化能力 医学图像 数字病理 NA 少样本学习 深度编码-解码网络 图像 未明确提及具体样本数量
465 2025-07-11
Predicting drug-drug interactions: A deep learning approach with GCN-based collaborative filtering
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 本文提出了一种基于图卷积网络(GCN)和协同过滤的AI推荐模型,用于预测药物-药物相互作用(DDIs) 该模型通过分析相互作用药物的连接性而非化学结构,避免了传统分类模型中对未定义相互作用进行负采样的问题,能够预测所有未知药物对的潜在相互作用 模型的性能仅依赖于DDI报告数据,可能受到数据质量和覆盖范围的限制 开发一种能够准确预测药物-药物相互作用的方法,以提高患者用药安全性 药物-药物相互作用(DDIs) 机器学习 NA 图卷积网络(GCN),协同过滤 GCN 药物相互作用数据 4,072种药物和1,391,790对药物相互作用
466 2025-07-11
A prior knowledge-supervised fusion network predicts survival after radiotherapy in patients with advanced gastric cancer
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
research paper 提出一种基于先验知识的多模态融合方法,用于预测晚期胃癌患者放疗后的总生存期 引入先验知识监督的融合网络(PKSFnet)及新型采样策略,提升预测性能 未明确说明样本多样性或外部验证集的泛化能力 预测晚期胃癌患者放疗后的总生存期以辅助临床诊疗决策 晚期胃癌患者的CT图像及多模态临床数据 digital pathology gastric cancer multimodal fusion PKSFnet (prior knowledge-supervised fusion network) CT图像及多模态临床数据 未明确说明具体样本量
467 2025-07-11
Your turn: At home turning angle estimation for Parkinson's disease severity assessment
2025-Sep, Artificial intelligence in medicine IF:6.1Q1
研究论文 本文提出了一种基于深度学习的方法,通过从视频中提取3D骨架并计算髋关节和膝关节的旋转,自动量化帕金森病患者的转弯角度 首次探索使用单目相机数据在家庭环境中量化帕金森病患者的转弯角度 在自由生活环境中难以获得准确的地面真实数据,因此将角度量化为最近的45°分箱 利用步态特征作为帕金森病进展的敏感指标 帕金森病患者和健康对照志愿者的转弯视频片段 计算机视觉 帕金森病 3D骨架提取 Fastpose和Strided Transformer 视频 来自24名受试者(12名帕金森病患者和12名健康对照志愿者)的1386个转弯视频片段
468 2025-07-11
Computational screening of umami tastants using deep learning
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究开发了一种基于深度学习的虚拟筛选流程,用于从大型分子数据库中识别高效鲜味物质 首次构建了基于Transformer的架构用于鲜味物质分类,并开发了预测鲜味化合物效能的神经网络模型 研究仅基于分子结构特征,未考虑实际味觉测试验证 开发高效识别新型鲜味物质的计算方法 鲜味分子与非鲜味分子 机器学习 NA 深度学习 Transformer, 神经网络 分子结构数据 867个分子(439个鲜味分子和428个非鲜味分子),并在包含约70,000个分子的FooDB数据库上进行应用验证
469 2025-07-11
iDCNNPred: an interpretable deep learning model for virtual screening and identification of PI3Ka inhibitors against triple-negative breast cancer
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 提出了一种可解释的深度学习模型iDCNNPred,用于虚拟筛选和识别针对三阴性乳腺癌的PI3Ka抑制剂 开发了Custom-DCNN模型,性能优于预训练模型,并通过Grad-CAM技术增强了模型预测的可解释性 需要进一步的药物化学工作来提高筛选出的分子的效力和选择性 识别和筛选针对三阴性乳腺癌的PI3Ka抑制剂 PI3Ka抑制剂 数字病理学 三阴性乳腺癌 分子对接、体外PI3K抑制研究 Custom-DCNN、AlexNet、SqueezeNet、VGG19 2D分子图像 Maybridge化学库中的分子,最终筛选出12个有潜力的分子,其中4个进行了生物验证
470 2025-07-11
GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 提出了一种名为GraphkmerDTA的新型深度学习模型,用于药物-靶标结合亲和力预测,并在多靶点抗阿尔茨海默病药物发现中应用 整合了Kmer特征与结构拓扑信息,克服了现有方法在序列特征提取和拓扑信息利用上的不足 未提及具体的计算资源需求或模型训练时间,可能在实际应用中存在效率问题 提高药物-靶标结合亲和力预测的准确性,并应用于药物发现 药物分子和蛋白质 机器学习 阿尔茨海默病 图神经网络(GNN)和全连接网络 GraphkmerDTA(结合GNN和Kmer特征) 序列数据和结构数据 超过两千种化合物的筛选库
471 2025-07-11
Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI
2025-Aug-01, Investigative radiology IF:7.0Q1
研究论文 本研究探讨了基于深度学习的信号放大技术在单剂量T1加权脑MRI图像中的应用,以提高转移瘤的检测能力 利用深度学习技术从单剂量对比增强图像生成人工双剂量图像,避免了使用实际双剂量对比剂带来的环境和健康风险 研究中读者在人工双剂量图像上显示出更多的假阳性发现,尽管差异不显著 评估深度学习增强的单剂量脑MRI图像在转移瘤检测中的效果 30名参与者(平均年龄58.5±11.8岁,23名女性)的脑MRI图像 数字病理 脑转移瘤 MRI 深度学习 医学影像 30名参与者
472 2025-07-11
Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools
2025-Aug, Molecular diversity IF:3.9Q2
综述 本文综述了抗病毒肽(AVPs)的数据库构建、理化特性及其在机器学习预测工具中的应用 探讨了AI技术在抗病毒肽发现中的关键作用,并介绍了专用数据库(如DRAVP、AVPdb和DBAASP)的开发与应用 现有数据库存在数据集小、注释不完整以及与多组学数据整合不足的问题,且预测工具面临过拟合、实验验证有限和缺乏机制性见解的挑战 推动抗病毒肽和拟肽类药物的发现与开发 抗病毒肽(AVPs)及其理化特性 自然语言处理 NA 机器学习和深度学习 NA 文本数据 NA
473 2025-07-11
Integrating deep learning and molecular dynamics simulations for FXR antagonist discovery
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究结合深度学习和分子动力学模拟,发现FXR拮抗剂用于治疗代谢疾病 开发了预测FXR拮抗活性和毒性的深度学习模型,并通过分子动力学模拟筛选出具有潜在治疗价值的化合物 研究中筛选的化合物数量有限,且未进行临床验证 发现可用于治疗代谢疾病的FXR拮抗剂 FXR(法尼醇X受体)及其潜在拮抗剂 机器学习 代谢疾病 深度学习,分子动力学模拟 深度学习模型 化合物数据 从HMDB数据库中筛选的217,345种化合物
474 2025-07-11
QMGBP-DL: a deep learning and machine learning approach for quantum molecular graph band-gap prediction
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本文提出了一种结合深度学习和机器学习的量子分子图带隙预测方法QMGBP-DL QMGBP-DL方法通过结合分子图编码器和机器学习模型,显著提高了分子和材料带隙能量的预测准确性 未提及具体局限性 加速药物设计和材料科学中的发现,特别是分子和量子材料性质的预测 分子和量子材料的带隙能量 机器学习 NA 图卷积网络(GCN)和随机森林 GCN, Random Forest 分子图数据(SMILES字符串) QM9, PCQM4M和OPV数据集
475 2025-07-11
Cangrelor and AVN-944 as repurposable candidate drugs for hMPV: analysis entailed by AI-driven in silico approach
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究通过AI驱动的计算机模拟方法,筛选出Cangrelor和AVN-944作为抗人类偏肺病毒(hMPV)的候选药物 利用深度学习构建药效团模型筛选FDA批准药物和抗病毒药物,并通过分子对接和分子动力学模拟验证药物与hMPV F蛋白的结合稳定性 需要进一步的体外和体内实验验证候选药物的疗效 寻找可重新用于治疗hMPV感染的药物 人类偏肺病毒(hMPV)的F蛋白 计算生物学 呼吸道感染 深度学习、分子对接、分子动力学模拟 深度学习药效团模型 蛋白质结构数据、药物分子数据 初始筛选2400种FDA批准药物和255种抗病毒药物,最终筛选出792种和72种候选药物
476 2025-07-11
Machine learning approaches for predicting the small molecule-miRNA associations: a comprehensive review
2025-Aug, Molecular diversity IF:3.9Q2
综述 本文全面回顾了机器学习在预测小分子与microRNA关联中的应用 对32种基于机器学习的SMA预测方法进行了详尽分类和趋势分析,提供了未来研究的宝贵见解 未提及具体方法在临床转化中的实际应用限制 增强对小分子-miRNA相互作用的理解和预测能力 小分子(SMs)与microRNA(miRNAs)的关联关系 机器学习 NA 机器学习算法 经典ML、深度学习、矩阵分解、网络传播、图学习、集成学习 生物分子相互作用数据 NA
477 2025-07-11
Brain age prediction from MRI scans in neurodegenerative diseases
2025-Aug-01, Current opinion in neurology IF:4.1Q2
综述 本文综述了利用MRI扫描进行脑龄估计作为脑健康生物标志物的应用 探讨了脑龄估计在神经退行性疾病早期诊断、疾病监测和个性化医疗中的潜在应用 标准化实施、人口统计学偏差和可解释性等挑战仍然存在 探索脑龄估计作为神经退行性疾病早期检测工具的潜力 阿尔茨海默病、轻度认知障碍(MCI)和帕金森病患者 数字病理学 神经退行性疾病 MRI扫描、深度学习 深度学习模型 MRI图像 NA
478 2025-07-11
Discovery of novel potential 11β-HSD1 inhibitors through combining deep learning, molecular modeling, and bio-evaluation
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究通过结合深度学习、分子建模和生物评估,发现了新型潜在的11β-HSD1抑制剂 使用基于GRU的循环神经网络构建分子生成模型,结合转移学习生成潜在的11β-HSD1抑制剂 化合物02的抑制活性不如对照药物 开发新型11β-HSD1抑制剂 11β-HSD1抑制剂 机器学习 糖尿病、胰岛素抵抗、血脂异常和肥胖 深度学习、分子对接、分子动力学模拟 GRU 分子数据 1,854,484个药物样分子
479 2025-07-11
Drug repurposing to identify potential FDA-approved drugs targeting three main angiogenesis receptors through a deep learning framework
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究利用深度学习框架,从FDA批准的药物中识别出针对VEGFR、FGFR和EGFR三种主要血管生成受体的多靶点抑制剂 采用新颖的集成方法,结合分类和回归模型,同时考虑三种靶受体,以提高药物开发的成功率并减少耐药性 研究仅基于计算机模拟筛选,未进行实验验证 开发一种方法学,用于发现FDA批准药物中的多靶点抑制剂,以控制血管生成 2000多种FDA批准的药物 机器学习 癌症 深度学习 深度自编码器分类模型和回归模型 药物分子数据 2000多种FDA批准的药物
480 2025-07-11
Integrated machine learning-based virtual screening and biological evaluation for identification of potential inhibitors against cathepsin K
2025-Aug, Molecular diversity IF:3.9Q2
研究论文 本研究通过机器学习和深度学习虚拟筛选结合生物评估,识别出潜在的Cathepsin K抑制剂 结合机器学习和深度学习进行虚拟筛选,并进行了生物评估,鉴定出五种具有潜在抑制Cathepsin K活性的化合物 研究仅筛选了十种化合物,样本量较小 识别潜在的Cathepsin K抑制剂以治疗骨质疏松症 Cathepsin K及其潜在抑制剂 机器学习 骨质疏松症 虚拟筛选、分子对接、MD模拟、MM/PBSA分析 机器学习和深度学习模型 化学化合物数据 十种短名单化合物,其中五种表现出超过50%的抑制效果
回到顶部