本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4821 | 2025-04-18 |
Improving the cleaning quality of tube lumen instruments by imaging analysis and deep learning techniques
2025-Apr-18, Biomedizinische Technik. Biomedical engineering
DOI:10.1515/bmt-2023-0527
PMID:40241330
|
研究论文 | 本研究通过成像分析和深度学习技术提高管腔器械清洁质量的检测 | 引入两种注意力机制以关注重要特征,优化了模型性能 | 未提及模型在实际临床环境中的泛化能力 | 提高可重复使用管腔器械的清洁质量检测,确保患者安全和临床可靠性 | 管腔器械(TLIs) | 计算机视觉 | NA | 成像分析、深度学习 | FA-ResNet18(带scSE注意力机制) | 图像 | 未明确提及具体样本数量 |
4822 | 2025-04-18 |
Hybrid strategy of coronary atherosclerosis characterization with T1-weighted MRI and CT angiography to noninvasively predict periprocedural myocardial injury
2025-Apr-17, European heart journal. Cardiovascular Imaging
DOI:10.1093/ehjci/jeaf116
PMID:40241659
|
research paper | 本研究探讨了结合T1加权MRI和CT血管造影的混合策略,以无创预测冠状动脉介入治疗后的围手术期心肌损伤 | 首次将MRI与CCTA结合,使用最新的成像和定量技术,提高了PMI预测的准确性 | 样本量较小,仅包括120名患者的132个病变 | 探索一种混合CCTA-MRI策略,以提高围手术期心肌损伤的预测准确性 | 计划进行选择性PCI的冠状动脉粥样硬化患者 | digital pathology | cardiovascular disease | T1-weighted MRI, CT angiography, deep learning | deep learning | image | 120名患者的132个病变 |
4823 | 2025-04-18 |
Left-handed conformations of glycyl residues may confer protection against protein aggregation
2025-Apr-17, The FEBS journal
DOI:10.1111/febs.70092
PMID:40243345
|
research paper | 该研究探讨了甘氨酸残基的左旋构象在防止蛋白质聚集中的作用及其进化意义 | 揭示了左旋构象甘氨酸残基在疾病变异位点的过度表现及其在进化中的保守性,以及其通过影响自由能来破坏天然折叠的机制 | 研究主要基于已知的疾病和良性变异位点,可能未涵盖所有相关情况 | 研究甘氨酸残基的左旋构象对蛋白质稳定性和聚集的影响及其在疾病变异中的作用 | 甘氨酸残基及其在蛋白质中的构象 | 生物信息学 | 蛋白质聚集相关疾病 | 构象分析、深度学习 | 深度学习模型 | 蛋白质序列和结构数据 | 1104个疾病变异位点和343个良性变异位点 |
4824 | 2025-04-18 |
DWI of the rectum with deep learning reconstruction: comparison of PROPELLER, reduced FOV, and conventional DWI
2025-Apr-17, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04950-8
PMID:40244478
|
研究论文 | 比较PROPELLER、rFOV和传统DWI结合深度学习重建在评估直肠肿瘤中的图像质量和诊断性能 | 首次结合深度学习重建技术比较三种DWI技术在直肠肿瘤评估中的表现 | 样本量较小(38例患者),且对诊断准确性的影响不显著 | 评估不同DWI技术结合DLR在直肠肿瘤诊断中的表现 | 直肠肿瘤患者 | 医学影像分析 | 直肠癌 | PROPELLER-DWI, rFOV-DWI, cDWI, 深度学习重建(DLR) | 深度学习 | MRI影像 | 38例患者共42次MRI检查 |
4825 | 2025-04-18 |
Empowering natural product science with AI: leveraging multimodal data and knowledge graphs
2025-Apr-16, Natural product reports
IF:10.2Q1
DOI:10.1039/d4np00008k
PMID:39148455
|
观点文章 | 探讨如何利用AI和多模态数据及知识图谱推动天然产物科学的发展 | 提出通过构建知识图谱整合多模态、非标准化的天然产物数据,以开发能模拟科学家决策的AI模型 | 天然产物数据存在多模态、不平衡、非标准化且分散的问题,限制了现有深度学习架构的应用 | 推动AI在天然产物科学中的应用,模拟科学家的决策过程 | 天然产物数据及知识图谱 | 机器学习 | NA | 知识图谱构建 | 深度学习架构 | 多模态数据 | NA |
4826 | 2025-04-18 |
A deep learning approach for quantifying CT perfusion parameters in stroke
2025-Apr-16, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/adc9b6
PMID:40194529
|
research paper | 本文提出了一种基于Transformer的网络,用于从CT灌注图像中准确估计生理参数,以提高缺血性中风的诊断和治疗效果 | 使用Transformer网络学习CTP图像的体素级时间特征,估计局部动脉输入函数和流量缩放的残留函数,显著提高了参数估计的准确性 | 研究主要基于模拟数据和ISLES18数据集,需要在更广泛的患者数据中进行验证 | 开发一种从CT灌注图像中准确估计生理参数的方法,以改进缺血性中风的诊断和治疗 | CT灌注图像中的局部动脉输入函数和流量缩放的残留函数 | digital pathology | cardiovascular disease | CT perfusion imaging | Transformer | image | ISLES18数据集和模拟数据 |
4827 | 2025-04-18 |
Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM
2025-Apr-16, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005898
PMID:40237349
|
研究论文 | 本研究比较了CNN和Transformer模型在骨扫描中诊断骨转移的性能,并评估了ConvNeXt和Transformer模型的应用效果 | 首次探索了ConvNeXt和Transformer模型在骨扫描中诊断骨转移的应用,并比较了多种深度学习模型的性能 | 研究仅基于两家医院的数据,可能缺乏广泛代表性 | 评估各种深度学习模型在骨扫描中诊断转移性病灶的性能 | 癌症患者的骨扫描图像 | 计算机视觉 | 骨转移 | Grad-CAM | CNN, Transformer (DeiT, ViT Large 16, Swin Base), ConvNeXt Large | 图像 | 训练和验证集4626例(医院1),测试集1428例(医院2) |
4828 | 2025-04-18 |
Decoding cancer prognosis with deep learning: the ASD-cancer framework for tumor microenvironment analysis
2025-Apr-16, mSystems
IF:5.0Q1
DOI:10.1128/msystems.01455-24
PMID:40237527
|
评论 | 本文评论了Zhang等人提出的半监督学习框架ASD-cancer,用于改进多组学数据分析,并探讨了其方法创新和可扩展性 | ASD-cancer框架利用在癌症基因组图谱数据上预训练的自动编码器,性能优于基线模型,并通过迁移学习实现对新数据集的处理而无需重新训练 | 未来可考虑整合更多数据层和开发通过持续学习的自适应AI模型,以进一步提升框架性能 | 提高多组学数据分析的效率和准确性,以改善癌症预后和肿瘤微环境分析 | 癌症基因组图谱数据和多组学数据 | 数字病理学 | 癌症 | 多组学数据分析 | 自动编码器 | 多组学数据 | NA |
4829 | 2025-04-18 |
Deep Anatomical Federated Network (Dafne): An Open Client-server Framework for the Continuous, Collaborative Improvement of Deep Learning-based Medical Image Segmentation
2025-Apr-16, Radiology. Artificial intelligence
DOI:10.1148/ryai.240097
PMID:40237599
|
research paper | 介绍并评估了Dafne,一个免费的分散式协作深度学习系统,用于通过联邦增量学习对放射学图像进行语义分割 | 提出了一个开放的客户端-服务器框架,支持持续协作改进基于深度学习的医学图像分割 | 未提及具体的技术限制或数据隐私问题 | 开发和评估一个分散式协作深度学习系统,用于放射学图像的语义分割 | 放射学图像,特别是下肢MRI数据集 | digital pathology | NA | federated incremental learning | deep learning | image | 38 MRI数据集和639个实际使用案例 |
4830 | 2025-04-18 |
Automatic Detection of Mandibular Fractures on CT scan Using Deep Learning
2025-Apr-16, Dento maxillo facial radiology
DOI:10.1093/dmfr/twaf031
PMID:40238181
|
research paper | 本研究探讨了人工智能(AI),特别是深度学习在利用CT扫描检测和分类下颌骨骨折中的应用 | 使用nnU-Net分割框架和3D-ResNet进行下颌骨骨折的像素级精确定位和分类,显著提高了诊断准确率 | 研究数据仅来自单一医疗机构,可能影响模型的泛化能力 | 提高下颌骨骨折的自动检测和分类准确率,辅助临床诊断 | 459例患者的CT扫描数据 | digital pathology | mandibular fracture | CT scan | nnU-Net, 3D-ResNet | image | 459例患者 |
4831 | 2025-04-18 |
Clinical Neuroimaging Over the Last Decade: Achievements and What Lies Ahead
2025-Apr-16, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001192
PMID:40239043
|
review | 回顾过去十年临床神经影像学的显著进展,包括技术进步和科学发现 | 整合了光子计数计算机断层扫描、高低场磁共振成像系统等影像技术的进步,以及深度学习等先进数据分析方法的应用 | 未提及具体研究的样本量或数据规模,可能缺乏定量分析 | 总结临床神经影像学领域的进展和未来方向 | 临床神经影像学技术和应用 | digital pathology | NA | photon-counting computed tomography, low-field and high-field magnetic resonance imaging, deep learning | NA | image | NA |
4832 | 2025-04-18 |
DCA-U-Net: A Deep Learning Network for Segmentation of Laser-Induced Thermal Damage Regions in Mouse Skin OCT Images
2025-Apr-16, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/adcd7c
PMID:40239684
|
研究论文 | 提出了一种基于U-Net的高效轻量级分割模型DCA-U-Net,用于小鼠皮肤OCT图像中激光诱导热损伤区域的分割 | 通过引入更高效的Dilated ConvNeXT Block (DCB)和Dual Module Attention Block (DMAB),DCA-U-Net在减少参数数量的同时提高了特征提取能力和分割精度 | 研究仅在小鼠皮肤激光热损伤OCT数据集上进行了验证,未涉及人类临床数据 | 提高皮肤激光热损伤区域的自动分割精度,降低计算成本,为精准诊断和治疗提供技术支持 | 小鼠皮肤激光热损伤区域的OCT图像 | 数字病理学 | 皮肤损伤 | OCT成像 | DCA-U-Net(基于U-Net的改进模型) | 图像 | 两个不同部位的小鼠皮肤激光热损伤OCT数据集 |
4833 | 2025-04-18 |
Deep learning and conventional hip MRI for the detection of labral and cartilage abnormalities using arthroscopy as standard of reference
2025-Apr-16, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11546-9
PMID:40240555
|
research paper | 评估高分辨率深度学习髋关节MRI与传统压缩感知MRI在检测髋关节唇和软骨异常方面的性能 | 使用高分辨率深度学习MRI(CSAI)与传统压缩感知MRI(CS)进行比较,以髋关节镜检查为金标准 | 软骨评估的整体诊断性能仍然不理想,尤其是在某些髋关节区域的敏感性较低 | 比较深度学习MRI与传统MRI在髋关节唇和软骨异常检测中的性能 | 32名股骨髋臼撞击综合征患者 | digital pathology | geriatric disease | MRI, deep learning | deep learning | image | 32名患者(24名男性,平均年龄37.5岁) |
4834 | 2025-04-18 |
Synthetic electroretinogram signal generation using a conditional generative adversarial network
2025-Apr-16, Documenta ophthalmologica. Advances in ophthalmology
DOI:10.1007/s10633-025-10019-0
PMID:40240677
|
研究论文 | 使用条件生成对抗网络生成合成视网膜电图信号以支持分类模型 | 利用条件生成对抗网络生成合成视网膜电图信号,以解决异质性或罕见人群中数据不足的问题 | 研究仅基于公开可用的数据集,样本量相对较小 | 提高视网膜电图信号在分类模型中的性能 | 自闭症谱系障碍患者和对照组 | 机器学习 | 自闭症谱系障碍 | 条件生成对抗网络 | GAN, Time Series Transformer, Visual Transformer | 时间序列数据, 图像数据 | 560例自闭症谱系障碍患者和498例对照组,共18名自闭症谱系障碍患者和31名对照组 |
4835 | 2025-04-18 |
SlicesMapi: An Interactive Three-Dimensional Registration Method for Serial Histological Brain Slices
2025-Apr-16, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-025-09724-7
PMID:40240690
|
research paper | 提出了一种名为SlicesMapi的交互式三维配准方法,用于脑切片序列的配准 | 通过采用相邻切片和参考图谱切片的双重约束,在3D和2D空间中校正线性和非线性变形,并保证全分辨率图像的配准精度 | 未提及具体局限性 | 提高脑切片图像到3D标准脑空间的配准精度、计算效率和适用性 | 脑切片图像 | digital pathology | NA | 3D registration | NA | image | 未提及具体样本数量 |
4836 | 2025-04-18 |
Deep learning-based hippocampus asymmetry assessment for Alzheimer's disease diagnosis
2025-Apr-16, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17831
PMID:40241310
|
research paper | 本文提出了一种基于深度学习的海马体不对称性定量评估方法DeepHAA,用于阿尔茨海默病的诊断 | 通过深度学习模型提取MRI图像中海马体结构的特征表示,并利用交叉注意力机制进行特征融合,提出了一种基于多模态嵌入距离的定量评估方法 | 实验数据集规模相对较小(199名受试者),且未提及模型在其他独立数据集上的验证结果 | 开发定量评估海马体不对称性的方法以辅助阿尔茨海默病诊断 | MRI图像中的左右海马体结构 | digital pathology | geriatric disease | MRI扫描 | 深度学习模型(具体未说明,含交叉注意力机制) | 医学影像(MRI) | 199名受试者(53名正常认知NC,71名轻度认知障碍MCI,33名阿尔茨海默病AD) |
4837 | 2025-04-18 |
Physical twinning for joint encoding-decoding optimization in computational optics: a review
2025-Apr-15, Light, science & applications
DOI:10.1038/s41377-025-01810-4
PMID:40229266
|
综述 | 本文综述了计算光学中通过物理孪生技术实现编码-解码联合优化的最新进展 | 提出了一种端到端的联合优化技术,将光学编码数字化孪生到神经网络层,从而与解码过程同步优化 | 从优化的编码参数到实际调制元件的反向物理孪生面临诸如位深度、数值范围和稳定性等方面的挑战 | 探索计算光学中编码-解码联合优化的技术,以提升成像和传感能力 | 光学调制元件 | 计算光学 | NA | 深度学习 | 神经网络 | 光学数据 | NA |
4838 | 2025-04-18 |
Deep Learning in Knee MRI: A Prospective Study to Enhance Efficiency, Diagnostic Confidence and Sustainability
2025-Apr-15, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.03.018
PMID:40240275
|
研究论文 | 本研究评估了深度学习重建的并行采集技术(PAT)与同步多层(SMS)加速成像在膝关节MRI中的应用效果 | 结合深度学习重建的并行采集技术和同步多层加速成像,显著提高了膝关节MRI的图像质量和效率 | P4在软骨损伤的可视化方面诊断效果不如P2 | 评估深度学习技术在膝关节MRI中的应用效果,以提高效率和诊断信心 | 接受膝关节MRI检查的成年人 | 数字病理 | 骨科疾病 | 深度学习重建的并行采集技术(PAT)与同步多层(SMS)加速成像 | 深度学习 | MRI图像 | 34名参与者(平均年龄45±17岁;14名女性) |
4839 | 2025-04-18 |
Applied research on innovation and development of blue calico of Chinese intangible cultural heritage based on artificial intelligence
2025-Apr-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96587-2
PMID:40229316
|
研究论文 | 本文提出了一种基于增强循环一致性生成对抗网络的风格迁移方法,旨在促进传统蓝印花布图案的创新设计 | 在生成器网络结构中引入Ghost卷积模块和SRM注意力模块,以减少模型参数和计算成本,同时增强网络的特征提取能力 | 未提及具体的数据集规模或实验对比的基线模型 | 探索蓝印花布这一中国非物质文化遗产的创新发展和数字化保护 | 传统蓝印花布图案 | 计算机视觉 | NA | 生成对抗网络(GAN) | CycleGAN(增强版) | 图像 | 未明确提及 |
4840 | 2025-04-18 |
ALL diagnosis: can efficiency and transparency coexist? An explainble deep learning approach
2025-Apr-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97297-5
PMID:40229347
|
research paper | 该研究提出了一种结合EfficientNet-B7架构和可解释人工智能(XAI)方法的新型诊断框架,用于急性淋巴细胞白血病(ALL)的早期和准确诊断 | 结合EfficientNet-B7架构与XAI方法,提高诊断性能、计算效率和模型可解释性 | 未提及具体的数据集规模限制或模型在其他数据集上的泛化能力 | 优化急性淋巴细胞白血病的诊断方法,提高诊断准确性和临床适用性 | 急性淋巴细胞白血病(ALL)患者 | digital pathology | leukemia | Deep learning, XAI (Grad-CAM, CAM, LIME, IG) | EfficientNet-B7 | image | Taleqani Hospital数据集、C-NMC-19和Multi-Cancer数据集 |