深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26172 篇文献,本页显示第 4861 - 4880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4861 2025-05-03
Predicting metabolite response to dietary intervention using deep learning
2025-Jan-18, Nature communications IF:14.7Q1
研究论文 开发了一种名为McMLP的深度学习方法,用于预测个体对饮食干预的代谢反应 首次将深度学习方法(McMLP)应用于基于肠道微生物组成的代谢反应预测,填补了该领域的空白 未提及具体样本量的限制或模型在其他数据集上的泛化能力 实现精准营养,通过预测代谢反应来设计个性化的饮食策略 个体的肠道微生物组成及其对饮食干预的代谢反应 机器学习 NA 深度学习 McMLP(耦合多层感知器) 合成数据和真实数据(来自六项饮食干预研究) 未明确提及具体样本数量
4862 2025-05-03
Biologically relevant integration of transcriptomics profiles from cancer cell lines, patient-derived xenografts, and clinical tumors using deep learning
2025-Jan-17, Science advances IF:11.7Q1
研究论文 开发了一种名为MOBER的深度学习方法,用于整合癌症细胞系、患者来源的异种移植模型和临床肿瘤的转录组学数据,以提高临床转化性 提出了MOBER方法,能够同时提取具有生物学意义的嵌入信息并去除混杂因素,从而识别与临床肿瘤转录相似性最高的临床前模型 未明确提及具体局限性,但可能包括数据集的多样性和模型泛化能力的验证 提高癌症研究中临床前模型的临床转化性 癌症细胞系、患者来源的异种移植模型和临床肿瘤 机器学习 癌症 转录组学分析 深度学习 转录组数据 932个癌症细胞系、434个患者来源的异种移植模型和11,159个临床肿瘤样本
4863 2025-05-03
Explainable Predictive Model for Suicidal Ideation During COVID-19: Social Media Discourse Study
2025-Jan-17, Journal of medical Internet research IF:5.8Q1
研究论文 该研究利用自然语言处理技术分析社交媒体文本,开发可解释的自杀意念预测模型 提出混合深度学习网络架构(BERT+CNN+LSTM)并结合可解释AI技术分析COVID-19期间自杀意念特征变化 研究样本中自杀相关帖子比例较低(0.9%),可能影响模型泛化能力 检测COVID-19疫情期间社交媒体中表现的自杀意念并分析其影响因素 社交媒体用户发布的文本内容 自然语言处理 心理健康疾病 TF-IDF, Word2vec, BERT, LIME, SHAP BERT+CNN+LSTM混合模型 文本 从348,110条记录中筛选3,154条(1,338条自杀相关,1,816条非自杀相关)
4864 2025-05-03
Preparing physiotherapists for the future: the development and evaluation of an innovative curriculum
2025-Jan-17, BMC medical education IF:2.7Q1
研究论文 本研究评估了荷兰HAN应用科学大学物理治疗系设计的创新课程PACE的实施情况 PACE课程采用基于预设学习成果、个性化学习目标、灵活学习路径和程序化评估的综合学习方法,区别于传统教育 需要改进自主学习支持和促进深度学习的教学策略 评估创新课程PACE的实施效果,为未来课程开发提供信息 2021-2022年度的本科物理治疗学生和参与该课程的教师 教育创新 NA 混合方法设计,包括问卷、焦点小组、深度访谈和全国进度测试 NA 问卷数据、访谈数据和测试成绩 82名一年级学生和36名教师
4865 2025-05-03
Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China
2025-Jan-17, The oncologist
研究论文 本研究利用机器学习模型预测肝细胞癌破裂后腹膜转移的风险 首次比较了五种机器学习模型在预测肝细胞癌破裂后腹膜转移中的表现,并发现深度学习模型表现最佳 研究仅基于中国多中心数据,可能无法推广到其他人群 开发预测肝细胞癌破裂后腹膜转移的最佳机器学习模型 522名接受手术的肝细胞癌破裂患者 机器学习 肝细胞癌 机器学习模型比较 逻辑回归、支持向量机、分类树、随机森林、深度学习 临床数据 522名患者(来自7个医疗中心)
4866 2025-05-03
TopoQual polishes circular consensus sequencing data and accurately predicts quality scores
2025-Jan-16, BMC bioinformatics IF:2.9Q1
research paper 介绍了一种名为TopoQual的新工具,旨在提高PacBio HiFi测序数据的碱基质量预测准确性 TopoQual利用部分顺序比对(POA)、拓扑平行碱基和深度学习算法来优化共识序列,显著提高了碱基质量预测的准确性 目前的研究主要集中在PacBio HiFi测序数据上,对于其他测序技术的适用性尚未验证 提高PacBio HiFi测序数据在体细胞变异检测中的碱基质量预测准确性 PacBio HiFi测序数据 genomics NA circular consensus sequencing (CCS), high fidelity (HiFi) technology, partial order alignments (POA), deep learning deep learning algorithms sequencing data NA
4867 2025-05-03
Mitochondrial segmentation and function prediction in live-cell images with deep learning
2025-Jan-16, Nature communications IF:14.7Q1
研究论文 介绍了一种名为MoDL的深度学习算法,用于线粒体图像分割和功能预测 MoDL算法通过集成学习策略和大规模数据集训练,能够从未见过的细胞类型中精确预测异质性线粒体的功能 需要手动标注大量线粒体图像,且在小样本训练中可能面临挑战 探索线粒体形态与功能之间的复杂关系,并预测线粒体功能 线粒体的形态和功能 计算机视觉 NA 超分辨率成像(SR) 深度学习算法(MoDL) 图像 20,000个手动标注的线粒体图像用于训练,超过100,000个SR图像用于功能预测
4868 2025-05-03
PHARAOH: A collaborative crowdsourcing platform for phenotyping and regional analysis of histology
2025-Jan-16, Nature communications IF:14.7Q1
research paper 介绍了一个名为PHARAOH的在线协作平台,旨在简化组织图像注释流程,促进定制计算机视觉模型的开发与共享 采用弱监督、人机交互学习框架,通过组织大块组织为形态学均匀的簇进行批量注释,提高了注释效率 平台的成功依赖于专家注释的质量和数量,可能存在注释偏差 促进计算病理学应用的扩展、泛化和分类 组织图像 digital pathology NA weakly supervised learning, human-in-the-loop learning custom computer vision models image NA
4869 2025-05-03
Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques
2025-Jan-16, Neuroinformatics IF:2.7Q3
研究论文 本文提出了一种基于先进深度学习技术的系统,用于从MRI图像中预测儿童脑部疾病 使用了多种先进的CNN模型(如EfficientNetB0、InceptionResNetV2等)并结合数据可视化技术进行特征提取,显著提高了疾病预测的准确率 研究仅基于MRI图像,未考虑其他临床数据或多种模态数据的融合 开发高效准确的AI系统以辅助儿童脑部疾病的诊断和管理 儿童脑部疾病的MRI图像 数字病理学 儿童脑部疾病 MRI成像 CNN(包括EfficientNetB0、InceptionResNetV2等多种变体) 图像 未明确提及具体样本数量
4870 2025-05-03
Causality-driven candidate identification for reliable DNA methylation biomarker discovery
2025-Jan-15, Nature communications IF:14.7Q1
研究论文 提出了一种基于因果驱动的深度正则化框架,用于可靠地识别DNA甲基化生物标志物候选 结合因果思维、深度学习和生物先验知识,通过对比方案和空间关系正则化处理非因果混杂因素 未明确提及具体局限性 提高DNA甲基化生物标志物发现的可靠性,减少资源浪费 DNA甲基化生物标志物候选 生物信息学 多种人类疾病 DNA甲基化测序 深度学习 DNA甲基化数据 涉及多种人类疾病、样本来源和测序技术的模拟和应用
4871 2025-05-03
Fast and accurate deep learning scans for signatures of natural selection in genomes using FASTER-NN
2025-Jan-15, Communications biology IF:5.2Q1
research paper 介绍了一种名为FASTER-NN的深度学习模型,用于在基因组中快速准确地检测自然选择的特征 FASTER-NN通过扩张卷积处理等位基因频率和基因组位置,提高了检测自然选择的敏感性,且执行时间不受样本大小和染色体长度的影响 未提及具体的局限性 开发一种能够精确检测自然选择特征的深度学习分类器 基因组中的自然选择特征 machine learning NA CNN FASTER-NN genomic data NA
4872 2025-05-03
Efficient evidence selection for systematic reviews in traditional Chinese medicine
2025-Jan-15, BMC medical research methodology IF:3.9Q1
研究论文 介绍了一种新颖的精确优先综合信息提取和选择程序,以提高中医实践中证据选择的效率和准确性 结合了深度学习模型(Evi-BERT与基于规则的方法)、布尔逻辑算法和扩展检索策略,自动且准确地选择潜在证据,减少人工干预 方法的全部潜力需要进一步验证 提高中医系统评价和临床指南中证据选择的效率和准确性 中医相关的系统评价 自然语言处理 NA Evi-BERT与基于规则的方法、布尔逻辑算法 BERT 文本 十篇高质量、随机选择的中医相关系统评价
4873 2025-05-03
Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9
2025-Jan-15, Respiratory research IF:4.7Q1
研究论文 本研究通过分析H3K4me3修饰模式,构建了一个预测癌症免疫治疗反应的风险评分系统,并发现SLAMF9在免疫抑制和免疫治疗抵抗中的作用 首次构建了基于H3K4me3修饰模式的风险评分系统(H3K4me3-RS),并发现SLAMF9作为新的免疫检查点基因 研究主要基于生物信息学分析,实验验证部分仅限于小鼠黑色素瘤模型 探索H3K4me3修饰与抗肿瘤免疫之间的调控关系,并开发预测免疫治疗反应的生物标志物系统 肺癌腺癌(LUAD)患者和多种癌症类型的样本 癌症免疫学 肺癌 RNA-seq, 深度学习分析 PCA, 深度学习模型 基因表达数据 12,159个癌症样本(来自26种癌症类型)和725个癌症样本(来自5个免疫治疗队列)
4874 2025-05-03
Optimizing pain management in breast cancer care: Utilizing 'All of Us' data and deep learning to identify patients at elevated risk for chronic pain
2025-Jan, Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing IF:2.4Q1
研究论文 本研究利用深度学习方法和'All of Us'数据开发了一个预测模型,用于识别乳腺癌患者中慢性疼痛高风险人群 创新点在于结合时间序列和静态数据,使用基于Transformer的时间序列分类器进行预测 NA 开发预测模型以识别乳腺癌患者中慢性疼痛高风险人群 乳腺癌患者 机器学习 乳腺癌 深度学习 Transformer-based time-series classifier 人口统计、诊断和社会调查数据 1131名患者
4875 2025-05-03
An examination of daily CO2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models
2025-Jan, Environmental science and pollution research international
research paper 比较分析机器学习、深度学习和统计模型在预测每日CO2排放中的性能 首次比较了14种不同模型在预测每日CO2排放中的表现,并应用差分和集成技术提升模型性能 仅覆盖了四个主要污染地区,未考虑其他潜在影响因素 评估不同模型在预测每日CO2排放中的准确性和适用性 中国、印度、美国和欧盟27国及英国的每日CO2排放数据 machine learning NA 差分、集成学习(bagging和voting) ARMA, ARIMA, SARMA, SARIMA, SVM, RF, GB, ANN, GRU, LSTM, BILSTM, CNN-RNN 时间序列数据 2022年1月1日至2023年9月30日的每日CO2排放数据
4876 2025-05-03
An ensemble deep learning framework for energy demand forecasting using genetic algorithm-based feature selection
2025, PloS one IF:2.9Q1
研究论文 提出了一种集成深度学习方法,结合遗传算法进行特征选择,用于能源需求预测 集成遗传算法与多种预测模型(LSTM、BiLSTM、GRU)进行特征选择,并使用堆叠集成技术结合预测结果 未提及模型在实际应用中的泛化能力或在不同地理区域的适用性 提高能源需求预测的准确性和鲁棒性 历史能源消耗数据、天气变量和时间特征 机器学习 NA 遗传算法、深度学习 LSTM、BiLSTM、GRU、集成学习 时间序列数据 数据集被分为工作日和周末子集,进行了十次模拟
4877 2025-05-03
Dynamics and triggers of misinformation on vaccines
2025, PloS one IF:2.9Q1
research paper 该研究分析了2016至2021年间意大利社交媒体上关于疫苗的辩论,探讨了虚假信息的动态和触发因素 揭示了虚假信息不仅是新闻生态系统的寄生虫,而且是一种能够压倒主流媒体疫苗相关内容生产的自主力量 研究仅关注意大利的社交媒体平台,可能无法完全代表其他地区的情况 探讨疫苗相关虚假信息的动态和触发因素,以及其对公众参与的影响 意大利社交媒体平台(Facebook、Instagram、Twitter、YouTube)上的疫苗辩论内容 natural language processing NA symbolic transfer entropy analysis, deep learning models deep learning text 6年(2016-2021)的意大利社交媒体数据
4878 2025-05-03
A framework for assessing reliability of observer annotations of aerial wildlife imagery, with insights for deep learning applications
2025, PloS one IF:2.9Q1
研究论文 提出一个评估空中野生动物图像观察者标注可靠性的框架,并探讨其对深度学习应用的影响 通过聚类多个观察者的标注并选择模式分类,计算个体观察者与聚合标注集之间的一致性指标,评估标注可靠性 样本量有限,可能影响结果的普遍性 评估空中野生动物图像观察者标注的可靠性,以提高深度学习模型的训练数据质量 新墨西哥州迁徙水禽的无人机图像 计算机视觉 NA NA 深度学习 图像 12张无人机图像
4879 2025-05-03
A novel multi-user collaborative cognitive radio spectrum sensing model: Based on a CNN-LSTM model
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于CNN-LSTM模型的多用户协作认知无线电频谱感知模型,以提高频谱感知的准确性和效率 结合CNN的局部特征提取能力和LSTM处理序列数据的优势,并引入多头自注意力机制,优化了动态复杂环境下的模型适应性和鲁棒性 NA 提升多用户协作认知无线电系统中的频谱感知性能 认知无线电系统中的多用户协作频谱感知 机器学习 NA NA CNN-LSTM 序列数据 不同数量的次级用户(16、24、32、40、48)
4880 2025-05-03
Deep learning methods for improving the accuracy and efficiency of pathological image analysis
2025 Jan-Mar, Science progress IF:2.6Q2
研究论文 本研究提出了一种结合U-Net和EfficientNetV2的深度学习模型,用于提高病理图像分析的准确性和效率 开发了一种新的热图生成算法,结合了精细的图像预处理、数据增强策略、集成学习、注意力机制和深度特征融合技术 NA 提高病理图像分析的准确性和效率 病理图像 数字病理 NA 深度学习 U-Net, EfficientNetV2 图像 NA
回到顶部