深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24644 篇文献,本页显示第 4881 - 4900 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4881 2025-04-08
Deep learning prediction of mammographic breast density using screening data
2025-Apr-04, Scientific reports IF:3.8Q1
研究论文 本研究探讨了使用深度学习模型对乳腺密度进行客观评估的方法 采用深度学习模型InceptionV3对乳腺密度进行四分类预测,并证明其优于放射科医生的准确性和一致性 放射科医生在脂肪和分散类别上表现优于模型,但模型在高密度类别上表现更优 开发一种客观评估乳腺密度的深度学习工具 乳腺X线摄影图像 计算机视觉 乳腺癌 深度学习 InceptionV3 图像 9,621名女性的57,282张乳腺X线摄影图像
4882 2025-04-08
Parallel boosting neural network with mutual information for day-ahead solar irradiance forecasting
2025-Apr-04, Scientific reports IF:3.8Q1
research paper 提出了一种新颖的并行提升神经网络框架(PBNN),用于日前太阳辐照度预测,结合了提升算法和前馈神经网络 提出了一种新的并行提升神经网络框架(PBNN),结合了三种提升决策树算法(XgBoost、CatBoost和RF回归器)作为基础学习器,并通过前馈神经网络(FFNN)分配最优权重以生成最终预测 虽然PBNN在性能上有所提升,但其计算复杂度可能仍然较高,且依赖于特征选择算法的准确性 提高日前太阳辐照度预测的准确性,以支持光伏系统的可靠运行 太阳辐照度数据 machine learning NA 并行提升神经网络(PBNN)、互信息(MI)算法 PBNN、XgBoost、CatBoost、RF、FFNN 太阳辐照度数据 两个地理数据集(伊斯兰堡和圣地亚哥)
4883 2025-04-08
Improved deep learning model for accurate energy demand prediction and conservation in electric vehicles integrated with cognitive radio networks
2025-Apr-04, Scientific reports IF:3.8Q1
research paper 提出了一种改进的深度学习模型,用于准确预测电动汽车与认知无线电网络整合中的能源需求并实现节能 结合经验模态分解、CNN和海鸥优化算法(EMD-CNN-SOA),提高了能源需求预测的准确性 未提及具体的数据集来源或实验环境限制 解决电动汽车能源需求预测和节能问题,减轻电网负担并降低充电成本 电动汽车和认知无线电网络 machine learning NA Empirical Mode Decomposition, Seagull Optimization Algorithm EMD-CNN-SOA, CNN, LSTM, RNN NA NA
4884 2025-04-08
Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant
2025-Apr-04, Nature communications IF:14.7Q1
research paper 开发了一个名为DeepPlant的深度学习模型,用于提高植物中5mC检测的准确性,特别是在CHH位点 结合Bi-LSTM和Transformer架构,显著提高了CHH检测的准确性,并在CpG和CHG基序上表现良好 缺乏高甲基化阳性样本的稀缺性限制了CHH甲基化检测的泛化能力 提高植物中5mC检测的准确性,特别是在CHH位点 植物中的5mC甲基化 machine learning NA Oxford Nanopore sequencing, bisulfite-sequencing Bi-LSTM, Transformer sequencing data nine species
4885 2025-04-08
A performance-driven hybrid text-image classification model for multimodal data
2025-Apr-04, Scientific reports IF:3.8Q1
research paper 本文提出了一种结合文本和图像处理的混合模型HTIC,用于多模态数据的分类任务 HTIC模型采用复杂的深度学习架构,结合VGG16进行图像分类和Roberta与MYSQL进行文本分类,通过多模态特征提取层确保不同类型数据的兼容性 未明确提及具体局限性 提高多模态数据分类的准确性、可解释性和应用性 多模态数据(文本和图像) machine learning NA 深度学习、多模态特征提取 HTIC(混合文本图像分类模型)、VGG16、Roberta、CNN 文本、图像 五个不同的数据集(包括NFT数据集)
4886 2025-04-08
The analysis of optimization in music aesthetic education under artificial intelligence
2025-Apr-04, Scientific reports IF:3.8Q1
research paper 探讨人工智能环境下深度学习技术在音乐审美教育中的优化应用 结合AI和深度学习算法,提出具有更高准确性的音乐情感识别方法,为音乐审美教育提供新方向 未提及具体实验样本的多样性和规模,可能影响结果的普遍性 优化音乐审美教育方法,探索AI时代音乐教育的新发展方向 不同年龄段和音乐素养水平的学生 machine learning NA deep learning NA NA NA
4887 2025-04-08
Wild horseshoe crab image denoising based on CNN-transformer architecture
2025-Apr-04, Scientific reports IF:3.8Q1
research paper 提出了一种基于CNN-Transformer混合架构的野马马蹄蟹图像去噪方法 结合多头转置注意力机制、门控机制和深度可分离卷积,优化了野马马蹄蟹图像的去噪质量 未提及模型在极端噪声条件下的表现 提高野马马蹄蟹图像的去噪效果,以支持其追踪与定位 野马马蹄蟹的图像 computer vision NA CNN-Transformer混合模型 CNN, ViT image 未明确提及样本数量
4888 2025-04-08
Tunnel face rock mass class rapid identification based on TBM cutterhead vibration monitoring and deep learning model
2025-Apr-04, Scientific reports IF:3.8Q1
研究论文 基于TBM刀盘振动监测和深度学习模型,开发了一种端到端的隧道工作面岩体等级快速识别方法 结合1DCNN、BiLSTM和自注意力机制的优势,提出了一种新的深度学习模型,能够自动提取信号中的时空域特征,无需中断正常掘进过程即可快速识别岩体等级 缺乏对长隧道段连续振动记录的获取,且对TBM刀盘振动监测的研究较少 优化TBM操作参数和选择后续隧道支护措施 TBM隧道工作面的岩体条件 机器学习 NA 深度学习 1DCNN, BiLSTM, 自注意力机制 振动信号 NA
4889 2025-04-08
Deep-learning-assisted medium optimization improves hyaluronic acid production by Streptococcus zooepidemicus
2025-Apr-03, Journal of bioscience and bioengineering IF:2.3Q3
研究论文 利用深度学习算法优化培养基,提高兽疫链球菌生产透明质酸的效率 采用深度学习算法优化培养基成分,显著提高了透明质酸的生产效率 未提及实验是否在其他菌株或条件下验证过 提高兽疫链球菌生产透明质酸的效率 兽疫链球菌 机器学习 NA 深度学习 DL 实验数据 初始训练数据集OA01-18,54种候选优化培养基OM01-54
4890 2025-04-08
Compact Model Training by Low-Rank Projection With Energy Transfer
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出了一种名为LRPET的新训练方法,用于从头开始训练低秩压缩网络,并实现竞争性性能 通过交替执行随机梯度下降训练和权重矩阵的低秩流形投影,并结合能量转移和BN校正,提高了低秩压缩网络的性能 未明确提及具体限制,但可能包括对特定网络架构的依赖或计算资源需求 开发一种高效的深度神经网络低秩压缩方法 深度神经网络 机器学习 NA 低秩投影与能量转移(LRPET) CNN, Transformer 图像 CIFAR-10和ImageNet数据集
4891 2025-04-08
Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出了一种监督辅助的自监督深度学习方法,用于高光谱图像(HSI)的恢复 结合监督学习和自监督学习,引入噪声自适应损失函数,利用噪声退化HSI的内部统计信息进行恢复 未明确提及具体限制,但可能面临复杂噪声场景下的泛化能力挑战 解决高光谱图像恢复中的分布差距和噪声干扰问题 高光谱图像(HSI) 计算机视觉 NA 深度学习 监督辅助的自监督深度学习网络 高光谱图像 未明确提及具体样本数量,但使用了大量训练数据集
4892 2025-04-08
Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen
2025-Apr, Medical physics IF:3.2Q1
研究论文 本研究探讨了利用患者特异性自动分割方法改进腹部癌症患者在分次磁共振引导放疗中的自动分割效果 提出了基于患者特异性数据的自动分割模型,通过整合治疗计划和先前分次的MR图像,优化了分次治疗中的自动分割效果 研究样本量有限(151名患者),且仅针对特定类型的腹部癌症 改进分次磁共振引导放疗中的自动分割方法,以减少手动轮廓校正的时间消耗 腹部癌症患者的分次磁共振引导放疗数据 数字病理 腹部癌症 磁共振成像(MRI) 深度学习自动分割模型 图像 151名腹部癌症患者的151份计划MR图像和215份分次MR图像
4893 2025-04-08
Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study
2025-Apr, Medical physics IF:3.2Q1
research paper 评估深度学习图像重建(DLIR)在双能CT(DECT)中对图像质量和肝血管性病变检测的影响 首次在DECT中使用DLIR算法评估其对肝血管性病变检测的影响,并与传统重建方法进行比较 研究基于人体模型,未涉及真实患者数据,可能无法完全反映临床情况 评估DLIR在DECT中对图像质量和肝血管性病变检测的影响 模拟的肝血管性肝细胞癌(HCC)病变 digital pathology liver cancer dual-energy CT (DECT), deep learning image reconstruction (DLIR) DLIR CT image 一个人体模型(BMI为23 kg/m²),包含模拟的肝血管性病变
4894 2025-04-08
Multiscale Deep Learning for Detection and Recognition: A Comprehensive Survey
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
综述 本文全面介绍了多尺度深度学习在目标检测和识别中的发展,构建了一个易于理解且强大的知识结构 综合介绍了多尺度深度学习的理论和方法,包括金字塔表示、尺度空间表示和多尺度几何表示,并比较了不同多尺度结构设计的性能 指出了多尺度深度学习中存在的几个开放问题和未来方向,但未提出具体的解决方案 探讨计算机视觉中的多尺度问题,特别是目标检测和识别中的多尺度表示 多尺度深度学习的理论和方法 计算机视觉 NA NA CNN, Vision Transformers (ViTs) 图像 NA
4895 2025-04-08
Machine Learning and Deep Learning in Detection of Neonatal Seizures: A Systematic Review
2025-Apr, Journal of evaluation in clinical practice IF:2.1Q2
系统综述 本文系统综述了机器学习和深度学习在新生儿癫痫检测中的应用 总结了ML和DL在新生儿癫痫检测中的效果,并提出了未来研究方向 仅纳入了10项符合标准的研究,可能存在选择偏倚 研究ML和DL对新生儿癫痫检测的影响 新生儿癫痫 机器学习 新生儿癫痫 机器学习(ML)和深度学习(DL) CNN 脑电图(EEG)信号时间序列数据 17至258名新生儿重症监护病房(NICU)收治的新生儿,共1389次癫痫发作,平均834小时数据
4896 2025-04-08
Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study
2025-Mar-31, Journal of stomatology, oral and maxillofacial surgery
研究论文 本研究评估了基于深度学习的多模态CT/MRI图像融合和分割策略在口腔颌面部肿瘤手术规划中的可行性和准确性 结合了三种融合模型和三种分割模型,生成了九种混合深度学习模型,并评估了它们在口腔颌面部肿瘤分割中的性能 样本量较小(30例患者),且为单中心研究,可能影响结果的普遍性 评估深度学习在多模态CT/MRI图像融合和分割中的应用,为口腔颌面部肿瘤的虚拟手术规划提供基础 30名口腔颌面部肿瘤患者 数字病理 口腔颌面部肿瘤 CT/MRI扫描 Elastix, ANTs, NiftyReg, nnU-Net, 3D UX-Net, U-Net 医学影像(CT/MRI) 30名口腔颌面部肿瘤患者
4897 2025-04-08
A Deep Learning Model of Histologic Tumor Differentiation as a Prognostic Tool in Hepatocellular Carcinoma
2025-Mar-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本研究开发了一种基于深度学习的AI模型,用于量化肝细胞癌(HCC)肿瘤分化的组织学特征并预测癌症相关结果 首次使用AI模型量化HCC肿瘤分化的多个组织学特征,并证明其在预测HCC相关预后方面的优越性 研究样本量较小(99例HCC切除标本),需要更大样本验证 评估AI模型在量化HCC肿瘤分化特征和预测癌症相关结果方面的性能 肝细胞癌(HCC)切除标本 数字病理学 肝细胞癌 深度学习 监督学习AI模型 组织学图像 99例HCC切除标本
4898 2025-04-08
Deep learning in single-cell and spatial transcriptomics data analysis: advances and challenges from a data science perspective
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
综述 本文综述了深度学习在单细胞和空间转录组数据分析中的进展与挑战,并从数据科学的角度进行了系统评价 系统评价了先进的深度学习方法,并整理了来自九个基准的21个数据集来评估58种计算方法的性能 模型性能在不同基准数据集和评估指标间差异显著,高质量标注数据集仍然有限 探讨深度学习如何有效应用于生物、医学和临床环境中的转录组数据分析 单细胞和空间转录组数据 机器学习 NA 单细胞测序、空间转录组学 深度学习 基因表达、表观遗传修饰、代谢物水平、空间位置等多模态数据 21个数据集来自九个基准,涉及数百万细胞
4899 2025-04-08
Binding mechanism of inhibitors to DFG-in and DFG-out P38α deciphered using multiple independent Gaussian accelerated molecular dynamics simulations and deep learning
2025-Feb, SAR and QSAR in environmental research IF:2.3Q3
研究论文 本研究通过多种独立的Gaussian加速分子动力学模拟、深度学习和MM-GBSA方法,探究了抑制剂与DFG-in和DFG-out P38α的结合机制 结合GaMD模拟、深度学习和MM-GBSA方法,揭示了P38α构象差异对抑制剂结合的影响,并识别了关键功能域 未提及实验验证,仅基于计算模拟 探究P38α抑制剂结合机制,为药物设计提供理论支持 P38α蛋白及其抑制剂SB2、SK8和BMU 计算生物学 多种疾病(未具体说明) Gaussian加速分子动力学(GaMD)、深度学习(DL)、分子力学广义玻恩表面积(MM-GBSA) 深度学习模型(未具体说明) 分子动力学模拟数据 三种抑制剂(SB2、SK8、BMU)与P38α的结合研究
4900 2025-04-08
Predictive models for posttransplant diabetes mellitus in kidney transplant recipients using machine learning and deep learning approach: a nationwide cohort study from South Korea
2025-01-09, Kidney research and clinical practice IF:2.9Q1
研究论文 本研究利用机器学习和深度学习方法预测肾移植受者术后糖尿病(PTDM)的风险 首次在全国性队列研究中应用多种机器学习和深度学习模型预测PTDM,并比较其性能 研究仅基于韩国器官移植注册数据,可能不适用于其他人群 预测肾移植受者术后糖尿病的风险 肾移植受者 机器学习 糖尿病 机器学习、深度学习 XGBoost, CatBoost, light gradient boosting machine, logistic regression 临床数据 3,213名肾移植受者
回到顶部