深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24644 篇文献,本页显示第 4961 - 4980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4961 2025-04-06
Fast and Robust Single-Shot Cine Cardiac MRI Using Deep Learning Super-Resolution Reconstruction
2025-Apr-07, Investigative radiology IF:7.0Q1
研究论文 本研究比较了深度学习重建的单次平衡稳态自由进动电影图像与标准多次电影图像在心脏MRI中的诊断质量 使用深度学习超分辨率算法重建单次电影图像,显著缩短扫描时间并在心律失常或不可靠呼吸控制患者中表现出更优的图像质量 样本量相对较小(45名参与者),且仅使用1.5特斯拉设备进行扫描 评估深度学习重建技术在心脏MRI中的应用效果 心脏MRI图像 数字病理学 心血管疾病 平衡稳态自由进动(bSSFP) 深度学习超分辨率算法 MRI图像 45名参与者(平均年龄50岁±18,30名男性)
4962 2025-04-06
Relationships Between Familial Factors, Learning Motivation, Learning Approaches, and Cognitive Flexibility Among Vocational Education and Training Students
2025-Apr-04, The Journal of psychology IF:2.2Q2
研究论文 本研究探讨了家庭因素(父母自主支持和父母支持)与职业教育与培训(VET)学生的学习动机、学习方法和认知灵活性之间的关系 揭示了父母自主支持和父母支持通过影响学习动机和深度学习方法间接促进认知灵活性发展的机制 横断面研究设计无法确定因果关系,样本仅来自泰国曼谷地区的十所职业学校,可能存在地域局限性 探索家庭因素如何影响职业教育学生的学习过程和认知发展 557名职业教育与培训学生(男性56.7%,女性43.3%;平均年龄18.41岁) 教育心理学 NA 问卷调查和结构方程模型分析 结构方程模型 问卷数据 557名来自泰国曼谷地区十所职业学校的学生
4963 2025-04-06
Optical label-free microscopy characterization of dielectric nanoparticles
2025-Apr-03, Nanoscale IF:5.8Q1
教程 本文综述了无标记光学显微镜技术在纳米颗粒表征中的应用,重点介绍了亚微米尺寸介电颗粒的光学散射理论及其与颗粒质量、大小、结构和材料特性的关系 探讨了不同无标记显微镜技术在纳米颗粒表征中的差异与相似性,并介绍了结合深度学习图像分析的Python笔记本等新兴技术 目前尚无适用于所有纳米颗粒表征的通用解决方案,需要根据样品特性选择合适的技术 为纳米颗粒表征提供测量策略选择指导 亚微米尺寸介电颗粒 光学显微镜 NA 无标记光学显微镜技术 深度学习 图像 NA
4964 2025-04-06
Predictive Value of Social Determinants of Health on 90-Day Readmission and Health Utilization Following ACDF: A Comparative Analysis of XGBoost, Random Forest, Elastic-Net, SVR, and Deep Learning
2025-Apr-02, Global spine journal IF:2.6Q1
研究论文 本研究评估了社会健康决定因素(SDH)对前路颈椎间盘切除融合术(ACDF)患者90天再入院和健康利用(HU)的预测影响,并比较了多种机器学习模型的效果 首次应用机器学习评估SDH在ACDF患者中的作用,并识别出影响90天再入院和HU的关键SDH因素 依赖单一医疗系统的数据,且SDH测量采用代理指标而非患者直接报告的数据 评估SDH对ACDF患者术后90天再入院和健康利用的预测价值 3127名ACDF患者(2003-2023年) 机器学习 颈椎疾病 机器学习(包括XGBoost、随机森林、弹性网络、SVR和深度学习) Balanced Random Forest, Support Vector Regression (SVR) 临床和人口统计学数据 3127名ACDF患者
4965 2025-04-06
A deep learning framework for instrument-to-instrument translation of solar observation data
2025-Apr-02, Nature communications IF:14.7Q1
研究论文 本文提出了一种深度学习框架,用于太阳观测数据的仪器间转换,以实现多仪器数据集的同质化 利用生成对抗网络(GAN)进行无配对域转换,无需空间或时间重叠即可关联不同仪器 NA 解决不同仪器观测数据因校准和质量差异而难以联合使用的问题 太阳观测数据 计算机视觉 NA 生成对抗网络(GAN) GAN 图像 24年的空间观测数据及地面和空间太阳观测的四个不同应用
4966 2025-04-06
Hybrid deep learning model for density and growth rate estimation on weed image dataset
2025-Apr-02, Scientific reports IF:3.8Q1
研究论文 提出了一种混合深度学习模型,用于杂草图像数据集中的密度和生长率估计 结合了SegNet和U-Net CNN模型的特征,提出了混合卷积神经网络模型(HCNN),并引入了四种不同的改进池化层以减少经典分割模型的池化层和损失函数 NA 通过杂草图像分割研究杂草生长和密度估计,以帮助制定合适的杂草管理策略 杂草图像数据集,包括宽叶、单子叶和双子叶杂草 计算机视觉 NA 深度学习 HCNN(混合卷积神经网络),结合SegNet和U-Net 图像 2100张杂草图像(500张来自原始数据集,1600张来自CWFID数据集)
4967 2025-04-06
Machine learning fusion for glioma tumor detection
2025-Apr-02, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种用于神经胶质瘤检测和分级的机器学习框架 提出了一种结合深度学习的神经胶质瘤分类系统,实现了高准确率(99.21%)、特异性(98.3%)和敏感性(97.83%) 需要进一步的研究和验证以完善系统并确保其临床适用性 开发准确高效的肿瘤检测系统以改善患者护理和提高生存率 神经胶质瘤 计算机视觉 脑肿瘤 磁共振成像 深度学习模型 图像 NA
4968 2025-04-06
Investigation on potential bias factors in histopathology datasets
2025-Apr-02, Scientific reports IF:3.8Q1
research paper 该研究探讨了数字病理学数据集中潜在的偏差因素,特别是TCGA数据集中存在的站点特异性偏差 首次对TCGA数据集中站点特异性偏差进行了深入分析,并评估了两种前沿DNN模型在此问题上的表现 研究仅针对TCGA数据集和两种DNN模型进行分析,可能无法涵盖所有潜在偏差来源 调查数字病理学数据集中导致模型性能偏差的潜在因素 TCGA数据集中的数字病理学图像 digital pathology NA deep learning KimiaNet, EfficientNet medical images TCGA数据集中的样本
4969 2025-04-06
Estimating strawberry weight for grading by picking robot with point cloud completion and multimodal fusion network
2025-Apr-02, Scientific reports IF:3.8Q1
研究论文 本文提出了一种用于草莓采摘机器人分级的草莓重量估计方法,结合点云补全和多模态融合网络 提出了一种针对对称物体的多模态点云补全方法,并开发了名为MMF-Net的多模态融合回归模型,显著提高了草莓重量估计的准确率 方法主要针对对称物体,可能不适用于非对称水果或物体的重量估计 提高草莓采摘机器人分级的准确性和效率 草莓 计算机视觉 NA RGB-D成像、点云补全、多模态融合 MMF-Net(结合EfficientNet和PointNet) RGB-D图像、点云数据 1521组草莓RGB-D图像
4970 2025-04-06
Leveraging Fine-Scale Variation and Heterogeneity of the Wetland Soil Microbiome to Predict Nutrient Flux on the Landscape
2025-Apr-02, Microbial ecology IF:3.3Q2
研究论文 本研究通过高通量测序数据开发多样性图谱,揭示湿地土壤细菌的模式,并将氮循环基因的功能基因拷贝数与测量的营养通量速率联系起来,预测微生物组合组成对营养通量的影响 利用深度学习模型提高通量速率的预测准确性,并展示土壤细菌组合作为营养循环生物指示剂的潜力 研究仅关注美国湿地,可能不适用于其他地区的生态系统 阐明湿地土壤细菌的模式,并预测微生物组合组成对营养通量的影响 湿地土壤微生物组合 微生物生态学 NA 高通量测序 深度学习 测序数据 从表层土壤(0-5厘米)收集的土壤核心样本
4971 2025-04-06
Forecasting motion trajectories of elbow and knee joints during infant crawling based on long-short-term memory (LSTM) networks
2025-Apr-02, Biomedical engineering online IF:2.9Q3
研究论文 本研究探讨了使用LSTM网络预测婴儿爬行运动轨迹的可行性,以促进对爬行康复训练机器人主动控制的理解 首次将LSTM网络应用于预测婴儿爬行这一多变且复杂的运动轨迹,为康复训练机器人控制提供新方法 研究仅针对健康婴儿,未涉及运动障碍婴儿;样本量较小(20名) 探索LSTM网络预测婴儿爬行轨迹的可行性,为康复训练机器人控制提供技术支持 20名健康婴儿(8-15个月大)的肘关节和膝关节运动轨迹 机器学习 运动障碍 LSTM网络 LSTM 时间序列数据(关节角度) 20名健康婴儿(11男9女)的58,782个时间步数据
4972 2025-04-06
A compact deep learning approach integrating depthwise convolutions and spatial attention for plant disease classification
2025-Apr-02, Plant methods IF:4.7Q1
研究论文 提出一种轻量级深度学习模型LWDSC-SA,用于植物病害分类,结合深度可分离卷积和空间注意力机制以提高特征提取能力并保持计算效率 整合空间注意力和深度可分离卷积,提升模型在资源受限环境中的部署能力,同时在PlantVillage数据集上达到98.7%的准确率 模型仅在PlantVillage数据集上进行测试,未在其他多样化的真实农业场景中验证 开发高效轻量的植物病害分类模型以支持农业生产力 14种植物物种的叶片病害图像 计算机视觉 植物病害 深度学习 LWDSC-SA(深度可分离卷积与空间注意力结合的轻量模型) 图像 55,000张图像(涵盖38个病害类别)
4973 2025-04-06
Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions
2025-Apr-02, Cancer imaging : the official publication of the International Cancer Imaging Society IF:3.5Q1
研究论文 本研究评估了深度学习增强的T1加权VIBE序列(DL-VIBE)在MR引导的肝脏恶性肿瘤热消融过程中对图像质量和手术参数的影响,并与标准VIBE(SD-VIBE)进行了比较 使用深度学习算法(DL-VIBE)对术中SD-VIBE序列进行后处理,以减少噪声并提高清晰度,显著改善了图像质量和手术效率 样本量较小(34例患者),且研究时间范围有限(2021年9月至2023年2月) 评估深度学习增强的MR序列在肝脏恶性肿瘤热消融中的效果 34名接受MR引导微波消融的肝脏恶性肿瘤患者 数字病理 肝癌 MR-guided microwave ablation, deep learning algorithm 深度学习算法 MR图像 34名患者(平均年龄65.4岁,13名女性)
4974 2025-04-06
Global Clue-Guided Cross-Memory Quaternion Transformer Network for Multisource Remote Sensing Data Classification
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种名为GCCQTNet的多模态联合分类框架,用于多源遥感数据分类 设计了独立挤压扩展式融合结构和跨记忆四元数变换器结构,以克服多模态数据的异质性并探索其互补性 未明确提及具体局限性 解决多源遥感数据分类中的异质性问题并探索其互补性 多源遥感数据(高光谱图像HSI、合成孔径雷达SAR和激光雷达LiDAR) 计算机视觉 NA 深度学习 Transformer 遥感图像 三个公开的多源遥感数据集
4975 2025-04-06
Leveraging Unsupervised Data and Domain Adaptation for Deep Regression in Low-Cost Sensor Calibration
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种利用无监督数据和领域自适应技术进行深度回归的方法,用于低成本传感器的校准 将传感器校准任务转化为半监督领域自适应问题,并提出了新的解决方案,包括使用直方图损失对抗协变量偏移和样本加权处理标签差距 NA 提高低成本空气质量传感器的校准精度 低成本空气质量传感器 机器学习 NA 深度回归 NA 传感器数据 NA
4976 2025-04-06
Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
research paper 提出了一种结合模型驱动和数据驱动的方法,通过学习解耦先验(LDP)来提高高光谱异常检测的准确性 结合模型驱动的低秩表示方法和数据驱动的深度学习技术,通过学习解耦先验来捕获完整的先验知识 未提及具体局限性 提高高光谱图像中异常检测的准确性和泛化能力 高光谱图像中的背景和异常对象 computer vision NA 低秩表示(LRR)和深度学习 deep unfolding architecture hyperspectral images 多个广泛认可的数据集
4977 2025-04-06
Spectral Tensor Layers for Communication-Free Distributed Deep Learning
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出了一种用于无通信分布式深度学习的谱张量层 通过张量形式表示数据并替换传统神经网络中的矩阵乘积为张量乘积,实现了无通信成本的分布式学习 NA 解决分布式深度学习中的通信成本问题 深度学习模型在分布式环境下的优化 机器学习 NA 谱张量网络 传统神经网络 图像 MNIST, CIFAR-10, ImageNet-1K, ImageNet-21K数据集
4978 2025-04-06
An Interpretable Adaptive Multiscale Attention Deep Neural Network for Tabular Data
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
research paper 提出了一种名为自适应多尺度注意力深度神经网络的新技术,用于处理表格数据,以提高分类和回归任务的性能 通过并行多级特征加权,自适应多尺度注意力能够成功学习特征注意力,从而在七种不同分类任务和四种回归任务中实现高性能 与浅层学习技术相比,深度学习在表格结构化数据上的性能仍存在一定限制 提高表格数据在分类和回归任务中的性能 表格数据 machine learning NA adaptive multiscale attention deep neural network deep neural network tabular data 小、中、大和非常大的数据集
4979 2025-04-06
Deep Probabilistic Principal Component Analysis for Process Monitoring
2025-Apr, IEEE transactions on neural networks and learning systems IF:10.2Q1
research paper 提出了一种新颖的深度概率主成分分析(DePPCA)模型,结合了概率建模和深度学习的优势,用于工业过程监控和故障检测 结合了概率建模和深度学习的优势,提出了DePPCA模型,具有分层深度结构和端到端微调阶段 未提及具体的数据集限制或模型在更广泛工业场景中的适用性 提高工业过程监控和故障检测的准确性和效率 工业过程监控和故障检测 machine learning NA probabilistic modeling, deep learning DePPCA process data Tennessee Eastman (TE) process和multiphase flow (MPF) facility的数据
4980 2025-04-06
Covariate-Balancing-Aware Interpretable Deep Learning Models for Treatment Effect Estimation
2025-Apr, Statistics in biosciences IF:0.8Q4
research paper 本文提出了一种新的深度学习方法,用于在观察数据中估计处理效应,并提高了模型的可解释性 通过利用加权能量距离的特性,提出了一个更紧的平均处理效应(ATE)估计偏差上界,并设计了一个新的目标函数,不需要正确指定倾向得分模型 NA 提高观察数据中处理效应估计的准确性和可解释性 观察数据中的处理效应 machine learning NA 深度学习方法 neural additive models 观察数据 使用了两个基准数据集(IHDP和ACIC)以及NHANES中关于吸烟对血镉水平影响的研究数据
回到顶部