深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24240 篇文献,本页显示第 4961 - 4980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
4961 2025-03-19
CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data
2025-Mar, Journal of structural biology IF:3.0Q3
研究论文 本文介绍了CryoSamba,一种基于自监督深度学习的模型,用于去噪冷冻电子断层扫描(cryo-ET)图像 CryoSamba通过深度学习插值平均运动补偿的邻近平面,增强单连续2D平面,模仿增加曝光,从而增强相干信号并减少高频噪声,显著提高断层扫描对比度和信噪比 NA 提高冷冻电子断层扫描图像的信噪比和对比度,以便更好地进行3D断层扫描视觉解释 冷冻电子断层扫描图像 计算机视觉 NA 深度学习 自监督深度学习模型 3D体积数据 NA
4962 2025-03-19
Prediction of Lymph Node Metastasis in Colorectal Cancer Using Intraoperative Fluorescence Multi-Modal Imaging
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种结合术中荧光多模态成像和深度学习的模型,用于预测结直肠癌的淋巴结转移 提出了多模态荧光成像特征融合预测(MFI-FFP)模型,结合白光、荧光和伪彩色成像,显著提高了多模态信息的互补性,并设计了新的损失函数以解决样本不平衡和区分困难的问题 未提及具体的样本量限制或模型在其他数据集上的泛化能力 提高结直肠癌淋巴结转移的预测效率 结直肠癌患者的淋巴结 数字病理学 结直肠癌 术中荧光多模态成像 MFI-FFP模型 图像 未提及具体样本量
4963 2025-03-19
Pyramid Network With Quality-Aware Contrastive Loss for Retinal Image Quality Assessment
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种名为QAC-Net的统一视网膜图像质量评估框架,能够定性和定量地评估视网膜图像质量 QAC-Net通过金字塔网络结构和质量感知对比损失(QAC)提取区分性特征,提高了预测准确性,并构建了一个包含2300张真实失真视网膜图像的数据集 定量评估任务的数据集不足 设计有效的视网膜图像质量评估(RIQA)方法,以减少低质量图像导致的误诊风险 视网膜图像 计算机视觉 NA 深度学习 QAC-Net 图像 2300张真实失真视网膜图像
4964 2025-03-19
Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope
2025-Mar, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文介绍了一种用于高速光学相干弹性成像的微型光纤扫描内窥镜,并提出了基于深度学习的信号处理流程以实现实时弹性估计 提出了一种新型的微型光纤扫描内窥镜设计,并结合深度学习网络处理复杂的波场数据,实现了实时弹性成像 研究仅在体外表征的模型和离体猪组织中进行,尚未在人体内进行验证 开发一种适用于微创手术中的实时弹性成像技术 软组织的弹性特性 计算机视觉 NA 光学相干弹性成像 时空深度学习网络 图像序列 多个弹性模型和离体猪组织
4965 2025-03-19
Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images
2025-Mar, Environmental science and ecotechnology IF:14.0Q1
研究论文 本文介绍了一种通过深度学习分析显微镜图像实时量化活性污泥浓度和粘度的系统 创新点在于使用Xception卷积神经网络架构,从显微镜图像中实时定量识别活性污泥的混合液悬浮固体(MLSS)和表观粘度 研究仅在实验室规模的序批式反应器中进行,尚未在实际废水处理厂中验证 研究目的是开发一种实时在线测量活性污泥参数的方法,以支持未来智能废水处理厂的运行 研究对象是活性污泥的混合液悬浮固体(MLSS)和表观粘度 计算机视觉 NA 深度学习 Xception卷积神经网络 显微镜图像 41482张高质量图像
4966 2025-03-19
Using a fully automated, quantitative fissure integrity score extracted from chest CT scans of emphysema patients to predict endobronchial valve response
2025-Mar, Journal of medical imaging (Bellingham, Wash.)
研究论文 本文旨在开发和验证一个预测模型,使用从治疗前CT图像中提取的完全自动化的定量裂隙完整性评分(FIS)来识别适合进行支气管内瓣膜(EBV)治疗的患者 创新点在于使用完全自动化的深度学习方法来定量评估裂隙完整性,并以此作为预测EBV治疗效果的生物标志物 研究的局限性在于样本量相对较小(96例),且为回顾性研究,可能影响模型的泛化能力 研究目的是开发一个预测模型,用于识别适合进行EBV治疗的肺气肿患者 研究对象为中度至重度肺气肿患者,这些患者接受了EBV治疗 数字病理学 肺气肿 深度学习 逻辑回归模型 CT图像 96例患者的治疗前后胸部CT检查
4967 2025-03-19
Explainable deep learning algorithm for identifying cerebral venous sinus thrombosis-related hemorrhage (CVST-ICH) from spontaneous intracerebral hemorrhage using computed tomography
2025-Mar, EClinicalMedicine IF:9.6Q1
研究论文 本研究开发了一种可解释的深度学习模型,用于基于非增强计算机断层扫描(NCCT)快速识别由脑静脉窦血栓形成(CVST)引起的脑出血(ICH) 提出了一种基于迁移学习的3D U-Net模型,结合分割和分类,仅使用入院时的平扫CT进行CVST-ICH的识别,并采用多种可解释性方法(如Grad-CAM++、SHAP、IG和遮挡)来理解模型的注意力 需要更大样本量的前瞻性验证 开发一种可解释的深度学习模型,用于快速识别CVST-ICH与自发性脑出血(sICH) CVST-ICH患者和自发性脑出血(sICH)患者 数字病理学 脑静脉窦血栓形成(CVST) 非增强计算机断层扫描(NCCT) 3D U-Net CT图像 内部数据集包括102名CVST-ICH患者和306名sICH患者,外部数据集包括38名CVST-ICH患者和119名sICH患者
4968 2025-03-19
Deep learning-based model for prediction of early recurrence and therapy response on whole slide images in non-muscle-invasive bladder cancer: a retrospective, multicentre study
2025-Mar, EClinicalMedicine IF:9.6Q1
研究论文 本研究旨在开发和验证基于深度学习的早期复发预测模型(ERPM)和治疗反应预测模型(TRPM),以辅助非肌层浸润性膀胱癌(NMIBC)患者的临床决策 首次在NMIBC患者中开发并验证了基于全切片图像的深度学习模型,用于预测早期复发和治疗反应 研究为回顾性研究,需要进一步的前瞻性验证 开发并验证基于深度学习的预测模型,以辅助NMIBC患者的临床决策 非肌层浸润性膀胱癌(NMIBC)患者 数字病理学 膀胱癌 深度学习 多实例学习和集成学习模型 全切片图像(H&E染色和免疫组化染色) 1275名患者的4395张全切片图像
4969 2025-03-19
Deep Learning for Protein-Ligand Docking: Are We There Yet?
2025-Feb-09, ArXiv
PMID:38827451
研究论文 本文介绍了PoseBench,第一个用于蛋白质-配体对接的全面基准测试,旨在评估深度学习方法在蛋白质-配体对接和结构预测中的应用 首次系统地研究了最新对接和结构预测方法在使用预测的蛋白质结构进行对接、同时结合多个配体以及无先验结合口袋知识的情况下的行为 深度学习方法在预测新蛋白质序列或多配体蛋白质目标时,难以在结构准确性和化学特异性之间取得平衡 评估深度学习方法在蛋白质-配体对接和结构预测中的实际应用效果 蛋白质-配体对接和结构预测 机器学习 NA 深度学习方法 DL co-folding methods, AlphaFold 3 蛋白质结构数据 使用主要配体和多配体基准数据集进行测试
4970 2025-03-19
Change analysis of surface water clarity in the Persian Gulf and the Oman Sea by remote sensing data and an interpretable deep learning model
2025-Feb, Environmental science and pollution research international
研究论文 本研究利用遥感数据和可解释的深度学习模型分析了波斯湾和阿曼海水体透明度的变化 结合MODIS-Aqua影像、统计测试和深度学习模型,首次对波斯湾和阿曼海的水体透明度进行长期监测,并采用解释技术确定各标准的重要性 研究时间跨度较长,但未提及数据采集和处理过程中可能存在的误差或偏差 监测波斯湾和阿曼海的水体透明度,以评估生态系统健康和水质 波斯湾和阿曼海的水体透明度及相关环境参数 遥感与深度学习 NA MODIS-Aqua影像、统计测试、深度学习模型 CNN、LSTM 遥感影像、环境参数数据 2002年至2018年的MODIS-Aqua影像数据
4971 2025-03-19
Non-invasive Assessment of Coronary Artery Disease: The Role of AI in the Current Status and Future Directions
2025-Feb, Cureus
研究论文 本文探讨了人工智能在非侵入性冠状动脉疾病评估中的当前应用和未来发展方向 强调了人工智能,特别是深度学习和自然语言处理技术,在提高非侵入性冠状动脉疾病评估诊断准确性和临床效率方面的革命性潜力 人工智能的广泛应用面临数据隐私、高计算成本和资源分配不均等关键挑战 研究目的是探索人工智能在非侵入性冠状动脉疾病评估中的应用及其未来发展方向 冠状动脉疾病(CAD)患者 自然语言处理 心血管疾病 深度学习,自然语言处理 NA NA NA
4972 2025-03-19
A differentiable Gillespie algorithm for simulating chemical kinetics, parameter estimation, and designing synthetic biological circuits
2025-Jan-21, bioRxiv : the preprint server for biology
研究论文 本文开发了一种完全可微的Gillespie算法(DGA),用于模拟化学动力学、参数估计和设计合成生物电路 利用深度学习的最新突破,开发了一种完全可微的Gillespie算法,通过平滑函数近似不连续操作,允许使用反向传播计算梯度 NA 开发一种可微的Gillespie算法,用于快速准确地学习动力学参数并设计具有所需特性的生化网络 化学动力学模型和基因启动子的随机模型 机器学习 NA 深度学习 可微Gillespie算法(DGA) 实验测量的mRNA表达水平 两个不同的启动子
4973 2025-03-19
The Pfam protein families database: embracing AI/ML
2025-Jan-06, Nucleic acids research IF:16.6Q1
研究论文 本文介绍了Pfam蛋白质家族数据库的最新发展,包括与InterPro的整合、ECOD结构分类的协调、以及利用AlphaFold结构预测优化域边界和识别新域 利用AlphaFold结构预测优化域边界和识别新域,开发了Pfam-N,通过深度学习扩展家族覆盖范围,使UniProtKB覆盖范围增加了8.8% 尽管有最新进展,仍有许多蛋白质家族未被分类,Pfam仍在努力实现蛋白质宇宙的全面覆盖 更新和扩展Pfam蛋白质家族数据库,提高蛋白质域和家族的注释和分析能力 蛋白质域和家族 生物信息学 NA 深度学习,AlphaFold结构预测 深度学习模型 蛋白质序列和结构数据 NA
4974 2025-03-19
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文比较了使用LiDAR技术和深度学习模型进行急性烧伤伤口3D和2D面积测量的差异 开发了结合深度学习模型和LiDAR技术的应用B.E.N.,用于烧伤伤口的3D和2D测量,并验证了3D分割结果与实际烧伤伤口大小的匹配度 研究中未明确提及样本的具体数量,且仅针对烧伤伤口进行了研究,未涉及其他类型的伤口 比较3D和2D测量烧伤伤口面积的准确性,并探讨肢体曲率对3D/2D面积比的影响 烧伤伤口 计算机视觉 烧伤 LiDAR技术 深度学习模型 图像 NA
4975 2025-03-19
Machine and deep learning to predict viral fusion peptides
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文探讨了使用机器学习和深度学习模型预测病毒融合肽的方法 采用基于机器学习和深度学习的方法,特别是使用最先进的氨基酸标记分类转换器模型,有效预测病毒融合肽的位置 对于实验数据有限的病毒,预测结果可能存在不确定性 开发能够预测病毒融合蛋白序列中融合肽段的生物信息学工具 病毒融合蛋白及其融合肽段 自然语言处理 NA 机器学习和深度学习 转换器模型 蛋白质序列 超过50种模型和特征的组合
4976 2025-03-19
Explainable AI in medical imaging: an interpretable and collaborative federated learning model for brain tumor classification
2025, Frontiers in oncology IF:3.5Q2
研究论文 本文提出了一种可解释的协作联邦学习模型(CFLM),用于脑肿瘤分类,结合了可解释的人工智能(XAI)技术 结合了联邦学习(FL)和GoogLeNet架构,解决了传统集中式模型在数据多样性和模型透明度方面的挑战 研究中仅使用了10个客户端和50轮通信,样本量和训练轮次可能不足以全面验证模型的泛化能力 提高脑肿瘤分类的准确性和模型的可解释性,以支持临床决策 脑肿瘤(包括胶质瘤、脑膜瘤、无肿瘤和垂体瘤) 计算机视觉 脑肿瘤 深度学习(DL)、联邦学习(FL)、Grad-CAM、显著性图可视化 GoogLeNet MRI图像 10个客户端,每个客户端使用分散的本地数据集进行训练
4977 2025-03-19
Effect of natural and synthetic noise data augmentation on physical action classification by brain-computer interface and deep learning
2025, Frontiers in neuroinformatics IF:2.5Q3
研究论文 本研究探讨了自然和合成噪声数据增强对通过脑机接口和深度学习进行物理动作分类的影响 提出了两种噪声数据增强方法(自然和合成),并比较了它们对分类性能的影响,特别是在资源有限的设备上应用的潜力 研究中使用的深度神经网络相对简单,可能限制了模型的复杂性和性能 研究环境噪声对脑机接口中物理动作分类的影响 脑电图(EEG)信号和物理动作分类 脑机接口 NA 噪声数据增强(NDA) 全连接网络(FCN)和卷积神经网络(CNN) 脑电图(EEG)信号 使用grasp-and-lift(GAL)数据集中的手指-手掌-手操作数据
4978 2025-03-19
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues
2025, BME frontiers IF:5.0Q1
研究论文 本文开发了一种基于图的三维空间基因邻域网络嵌入方法(3D-spaGNN-E),用于发现亚细胞基因邻近关系并识别细胞间通讯中的关键亚细胞模式 结合了3D成像空间转录组学和基于图的深度学习,首次在三维空间中解析亚细胞基因邻近关系 数据复杂性增加,需要新的分析方法来处理三维空间数据 研究细胞间通讯中的亚细胞基因邻近关系 间充质干细胞(MSCs)、外周血单核细胞(PBMC)、小鼠下丘脑和皮质的星形胶质细胞与神经元 数字病理学 NA 3D成像空间转录组学、MERFISH 图自编码器 3D图像、基因表达数据 间充质干细胞培养物、MSC-PBMC共培养系统、小鼠下丘脑和皮质组织
4979 2025-03-19
Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma
2025, International journal of medical sciences IF:3.2Q1
研究论文 本研究通过多组学和单细胞分析,开发了基于机器学习的嘧啶代谢相关特征(PMRS),并评估其在肺腺癌(LUAD)患者预后和治疗中的潜在价值 首次结合多组学和单细胞分析,利用机器学习算法开发了PMRS模型,揭示了其在肺腺癌患者预后和治疗中的新见解 研究主要基于生物信息学分析,实验验证部分仅限于LYPD3的功能验证,未全面覆盖PMRS模型中所有关键因子 探索嘧啶代谢在肺腺癌患者预后和治疗中的意义,并开发相关预测模型 肺腺癌(LUAD)患者及其细胞系 机器学习 肺腺癌 多组学分析、单细胞分析 随机生存森林(Random Survival Forest) 基因组数据、单细胞数据 肺腺癌患者及其细胞系
4980 2025-03-19
Patho-Net: enhancing breast cancer classification using deep learning and explainable artificial intelligence
2025, American journal of cancer research IF:3.6Q2
研究论文 本文提出了一种名为Patho-Net的深度学习模型,用于乳腺癌分类,解决了可扩展性、固定大小输入图像和有限数据集上的过拟合问题 Patho-Net模型结合了GRU网络和U-Net架构,无需调整图像大小,提高了计算效率,并通过XAI提供了模型预测的清晰视觉解释 NA 提高乳腺癌分类的准确性和可解释性 乳腺癌组织病理学图像 数字病理学 乳腺癌 深度学习,可解释人工智能(XAI) U-Net,GRU 图像 100X BreakHis数据集
回到顶部