本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4981 | 2025-03-19 |
Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics
2025 Jan-Dec, American journal of Alzheimer's disease and other dementias
DOI:10.1177/15333175251325091
PMID:40087144
|
研究论文 | 本研究利用深度学习和放射组学技术,自动检测白质高信号患者的认知障碍 | 结合深度学习的VB-Nets卷积神经网络和放射组学特征,开发了一种新的认知障碍检测方法 | 样本量相对较小,且仅来自两家医院,可能影响模型的泛化能力 | 开发一种可靠的工具,用于早期诊断白质高信号患者的认知障碍 | 白质高信号患者 | 数字病理学 | 老年疾病 | 深度学习,放射组学 | VB-Nets卷积神经网络,随机森林模型 | 医学影像 | 108名患者(79名来自医院1,29名来自医院2) |
4982 | 2025-03-19 |
BMWP: the first Bengali math word problems dataset for operation prediction and solving
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00243-7
PMID:40092969
|
研究论文 | 本文介绍了首个孟加拉语数学应用题数据集BMWP,用于操作预测和解题,并探讨了使用深度学习技术进行孟加拉语应用题操作预测的方法 | 首次创建了孟加拉语数学应用题数据集BMWP,填补了低资源语言在这一领域的空白 | 数据集仅包含8653个应用题,可能不足以覆盖所有复杂情况 | 评估和提升AI模型在解决低资源语言数学应用题方面的能力 | 孟加拉语数学应用题 | 自然语言处理 | NA | 深度学习 | 深度学习神经网络架构 | 文本 | 8653个孟加拉语数学应用题 |
4983 | 2025-03-19 |
A review of machine learning and deep learning for Parkinson's disease detection
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00241-9
PMID:40092968
|
review | 本文综述了机器学习和深度学习在帕金森病检测和进展监测中的应用 | 通过整合多种数据源,提供了新的视角,并特别展示了音频分析和步态分析在早期症状检测和疾病进展监测中的有效性 | 需要大量且多样化的数据集,数据隐私问题,以及医疗数据质量的挑战,开发可解释的AI以确保临床医生能够信任和理解ML和DL模型 | 提高帕金森病诊断的准确性 | 帕金森病患者 | machine learning | geriatric disease | NA | SVM, RF, CNN | audio recordings, gait analysis, medical imaging | NA |
4984 | 2025-03-19 |
OnmiMHC: a machine learning solution for UCEC tumor vaccine development through enhanced peptide-MHC binding prediction
2025, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2025.1550252
PMID:40092998
|
研究论文 | 本研究开发了一种名为OnmiMHC的机器学习框架,用于预测MHC I类和II类分子对抗原肽的呈递,并通过大规模质谱数据和其他相关数据类型的整合,展示了其在预测肽-MHC结合亲和力方面的优越性 | 提出了基于深度学习的预测模型OnmiMHC,其在MHC-I和MHC-II任务中的表现优于现有方法,特别是在预测特定癌症类型的新抗原方面取得了显著成果 | NA | 开发一种新的机器学习框架,用于预测MHC I类和II类分子对抗原肽的呈递,以促进肿瘤疫苗的开发 | MHC I类和II类分子,以及它们与抗原肽的结合 | 机器学习 | 子宫内膜癌 | 深度学习 | OnmiMHC | 质谱数据和其他相关数据 | NA |
4985 | 2025-03-19 |
Pollen image manipulation and projection using latent space
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1539128
PMID:40093610
|
研究论文 | 本文利用深度学习技术中的风格迁移方法,研究如何通过显微镜图像处理改变花粉颗粒的大小和形状 | 首次将风格迁移技术应用于花粉颗粒图像的处理,以揭示其结构特征并生成多样化的花粉图像 | 未明确提及具体的数据集规模或实验验证的详细结果 | 研究花粉颗粒图像的处理方法,以增强对植物分类和生态学的理解 | 花粉颗粒的显微镜图像 | 计算机视觉 | NA | 风格迁移 | NA | 图像 | NA |
4986 | 2025-03-19 |
AI-powered topic modeling: comparing LDA and BERTopic in analyzing opioid-related cardiovascular risks in women
2025, Experimental biology and medicine (Maywood, N.J.)
DOI:10.3389/ebm.2025.10389
PMID:40093658
|
研究论文 | 本文比较了LDA和BERTopic两种主题建模技术在分析女性阿片类药物相关心血管风险中的应用 | 整合AI模块到LDA和BERTopic中,并首次在阿片类药物相关心血管风险分析中进行了全面比较 | LDA的解释需要手动进行,且需要特殊的数据预处理和停用词排除程序 | 比较LDA和BERTopic在分析女性阿片类药物相关心血管风险中的表现 | 女性阿片类药物相关心血管风险 | 自然语言处理 | 心血管疾病 | 主题建模 | LDA, BERTopic | 文本 | 1,837篇PubMed摘要 |
4987 | 2025-03-19 |
A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.013
PMID:40093651
|
研究论文 | 本文提出了一种新颖的两步概念驱动方法,旨在提高皮肤病变诊断的可解释性和信任度 | 通过模拟概念瓶颈模型的两个阶段,利用预训练的视觉语言模型自动预测临床概念,并使用现成的大型语言模型基于预测概念生成疾病诊断,支持测试时的人工干预以修正预测概念,从而提高最终诊断的准确性和决策透明度 | 需要少量标注示例,且未提及在大规模数据集上的验证 | 提高深度学习系统在临床环境中的可解释性和信任度 | 皮肤病变诊断 | 计算机视觉 | 皮肤病变 | 概念瓶颈模型(CBM)、视觉语言模型(VLM)、大型语言模型(LLM) | CBM、VLM、LLM | 图像 | 三个皮肤病变数据集 |
4988 | 2025-03-19 |
The global research of artificial intelligence on inflammatory bowel disease: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251326217
PMID:40093709
|
研究论文 | 本文通过文献计量学分析评估了人工智能(AI)在炎症性肠病(IBD)中的相关研究,识别了研究基础、当前热点和未来发展方向 | 首次通过文献计量学分析总结了AI在IBD中的应用现状,并可视化揭示了发展趋势和未来研究热点 | AI在IBD中的应用仍处于初期阶段,研究深度和广度有待进一步扩展 | 评估AI在IBD中的研究现状,识别研究基础和未来发展方向 | 炎症性肠病(IBD) | 机器学习 | 炎症性肠病 | 文献计量学分析 | 深度学习模型 | 文献数据 | 176篇AI相关论文,涉及1919位作者、790个研究机构、184种期刊和49个国家/地区 |
4989 | 2025-03-19 |
Data transformation of unstructured electroencephalography reports by natural language processing: improving data usability for large-scale epilepsy studies
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1521001
PMID:40093737
|
研究论文 | 本研究介绍了一种利用自然语言处理技术将癫痫患儿的非结构化脑电图报告转化为结构化数据的层次算法 | 开发了一种结合深度学习和基于规则的关键词提取的分层算法,用于将非结构化脑电图报告转化为结构化数据,提高了数据可用性 | 研究主要针对儿科癫痫患者,可能不适用于其他类型的患者或疾病 | 提高脑电图报告的数据可用性,以支持大规模癫痫研究 | 儿科癫痫患者的脑电图报告 | 自然语言处理 | 癫痫 | 自然语言处理(NLP) | 深度学习 | 文本 | 17,172份脑电图报告,来自3,423名儿科患者,其中6,173份正常和6,173份异常报告用于算法开发 |
4990 | 2025-03-19 |
Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases
2025, Theranostics
IF:12.4Q1
DOI:10.7150/thno.100786
PMID:40093903
|
综述 | 本文综述了人工智能增强的视网膜成像作为系统性疾病的生物标志物的研究进展 | 利用人工智能技术,特别是深度学习,增强视网膜成像在预测多种系统性疾病中的潜力 | 数据和技术的挑战与限制,包括自然语言处理框架和大语言模型的应用带来的机遇与担忧 | 探讨人工智能增强的视网膜成像在系统性疾病的筛查、早期检测、预测、风险分层和个性化预后中的潜力 | 视网膜图像 | 数字病理学 | 心血管疾病, 中枢神经系统疾病, 慢性肾病, 代谢疾病, 内分泌疾病, 肝胆疾病 | 深度学习, 自然语言处理, 大语言模型 | NA | 图像 | NA |
4991 | 2025-03-19 |
ViE-Take: A Vision-Driven Multi-Modal Dataset for Exploring the Emotional Landscape in Takeover Safety of Autonomous Driving
2025, Research (Washington, D.C.)
DOI:10.34133/research.0603
PMID:40093973
|
研究论文 | 本文介绍了ViE-Take,一个用于探索自动驾驶接管安全中情感影响的多模态数据集 | ViE-Take是首个以视觉驱动的方式探索自动驾驶接管中情感影响的数据集,具有多源情感激发、多模态驾驶员数据收集和多维情感注释三个关键属性 | 数据集的应用范围和深度仍需进一步验证和扩展 | 探索情感对驾驶员接管表现的影响,并开发相关预测模型 | 自动驾驶中的驾驶员接管表现 | 计算机视觉 | NA | 深度学习 | CNN, LSTM, GAN等 | 图像、视频 | 未明确提及具体样本数量 |
4992 | 2025-03-19 |
TPepRet: a deep learning model for characterizing T-cell receptors-antigen binding patterns
2024-Dec-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf022
PMID:39880376
|
研究论文 | 本文介绍了一种名为TPepRet的深度学习模型,用于表征T细胞受体(TCR)与抗原肽的结合模式 | TPepRet模型创新性地结合了子序列挖掘与语义整合能力,利用双向门控循环单元(BiGRU)网络和大语言模型框架,全面分析子序列和全局序列,从而准确解读TCR与肽之间的语义结合关系 | 尽管TPepRet在多种挑战性场景中表现出色,但其在更广泛的实际临床应用中的有效性和稳定性仍需进一步验证 | 研究目的是开发一种能够准确表征TCR与抗原肽结合模式的深度学习模型,以推进癌症免疫治疗、疫苗设计和自身免疫疾病管理 | 研究对象为T细胞受体(TCR)与抗原肽的结合模式 | 自然语言处理 | 癌症 | 深度学习 | BiGRU, 大语言模型 | 序列数据 | 使用了多种数据集进行性能基准测试,包括复杂环境中的真实结合体识别、大规模数据集的表达率验证等 |
4993 | 2025-03-19 |
Grand canonical Monte Carlo and deep learning assisted enhanced sampling to characterize the distribution of Mg2+ and influence of the Drude polarizable force field on the stability of folded states of the twister ribozyme
2024-Dec-14, The Journal of chemical physics
IF:3.1Q1
DOI:10.1063/5.0241246
PMID:39665326
|
研究论文 | 本研究结合大正则蒙特卡洛模拟和深度学习辅助的增强采样方法,探讨了Mg2+分布及Drude极化力场对twister核酶折叠状态稳定性的影响 | 首次将振荡化学势大正则蒙特卡洛与机器学习方法结合,用于研究Mg2+分布及电子极化对RNA稳定性的影响 | 研究局限于twister核酶,未涉及其他RNA结构 | 探索Mg2+分布及电子极化对RNA稳定性的影响 | twister核酶 | 分子动力学模拟 | NA | 大正则蒙特卡洛模拟、机器学习、元动力学模拟 | NA | 分子动力学模拟数据 | NA |
4994 | 2025-03-19 |
Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs
2024-Dec-10, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.07.627102
PMID:39713468
|
研究论文 | 本文开发了基于深度迁移学习的模型,用于筛选针对A类GPCRs的更安全药物 | 通过迁移学习和神经网络结合自然语言处理技术,预训练模型并微调以预测低效化合物或偏向性激动剂,实现了对A类GPCRs的大规模虚拟筛选 | 高质量数据的有限可用性仍然是开发可靠预测GPCR配体生物活性的深度学习模型的主要挑战 | 开发能够预测A类GPCRs低效化合物或偏向性激动剂的深度学习模型,以推进药物开发 | A类GPCRs及其配体 | 自然语言处理 | NA | 迁移学习, 自然语言处理 | 神经网络 | 序列数据, 配体数据集 | 所有A类GPCRs的受体序列和配体数据集 |
4995 | 2025-03-19 |
Deep learning prediction of error and skill in robotic prostatectomy suturing
2024-Dec, Surgical endoscopy
DOI:10.1007/s00464-024-11341-5
PMID:39433583
|
研究论文 | 本研究旨在验证机器人辅助前列腺切除术缝合中的手术技能评分和错误注释,以指导AI模型的开发和评估 | 首次在真实机器人手术视频中应用详细的错误检测方法和深度学习模型 | 错误预测的最佳模型平均绝对精度为37.14%,曲线下面积为65.10%,Macro-F1为58.97%,仍有提升空间 | 验证手术技能评分和错误注释,以指导AI模型的开发和评估 | 机器人辅助前列腺切除术(RARP)缝合视频 | 计算机视觉 | 前列腺癌 | 深度学习 | 深度学习模型 | 视频 | 54个RARP视频(266分钟) |
4996 | 2025-03-19 |
Prediction of Ischemic Stroke Functional Outcomes from Acute-Phase Noncontrast CT and Clinical Information
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240137
PMID:39404632
|
研究论文 | 本文提出了一种基于深度学习的模型,结合急性期非增强CT和临床信息预测缺血性卒中90天后的改良Rankin量表(mRS)评分 | 创新点在于融合了非增强CT和临床信息的深度学习模型,相比仅使用影像或临床信息的模型,预测效果更优 | 研究为回顾性研究,可能存在数据偏差,且样本量相对有限 | 预测缺血性卒中患者90天后的功能结局,以辅助医疗资源规划、临床试验设计和患者期望管理 | 缺血性卒中患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 影像数据(非增强CT)和临床数据 | 1335名患者(中位年龄71岁,674名女性),分为训练集、验证集和测试集 |
4997 | 2025-03-19 |
Deep Learning Estimation of Small Airways Disease from Inspiratory Chest CT is Associated with FEV1 Decline in COPD
2024-Sep-11, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.09.10.24313079
PMID:39314974
|
研究论文 | 本文开发了一种AI模型,用于从吸气胸部CT中估计小气道疾病(fSADTLC),并研究了其在慢性阻塞性肺疾病(COPD)中的临床关联 | 通过AI模型从单一吸气CT中估计小气道疾病,减少了对呼气CT的需求,提高了临床适用性 | 研究依赖于特定数据集(SPIROMICS和COPDGene),可能限制了结果的普适性 | 评估AI模型在估计小气道疾病方面的有效性,并研究其与COPD临床指标的关系 | COPD患者 | 数字病理学 | 慢性阻塞性肺疾病 | AI模型,生成模型 | 生成模型 | CT图像 | 2513名参与者(SPIROMICS研究),其中1055名用于模型开发,1458名用于验证;另外458名来自COPDGene研究用于验证 |
4998 | 2025-03-19 |
Acupuncture indication knowledge bases: meridian entity recognition and classification based on ACUBERT
2024-08-30, Database : the journal of biological databases and curation
DOI:10.1093/database/baae083
PMID:39213389
|
研究论文 | 本研究探讨了使用ACUBERT模型在针灸适应症中经络实体识别和分类的有效性及其差异原因 | 开发了具有中医特色的针灸适应症知识库(ACU-IKD)和ACUBERT模型,基于八纲辨证和脏腑辨证作为基础标签训练经络辨证模型 | 研究中未明确提及样本的多样性和模型的泛化能力 | 提高针灸适应症数据库中经络归类的分类效果 | 54,593个不同实体,选自82本针灸医学书籍 | 自然语言处理 | NA | BERT模型 | ACUBERT, 支持向量机, 随机森林 | 文本 | 54,593个实体 |
4999 | 2025-03-19 |
Integrating deep learning architectures for enhanced biomedical relation extraction: a pipeline approach
2024-08-28, Database : the journal of biological databases and curation
DOI:10.1093/database/baae079
PMID:39197056
|
研究论文 | 本文提出了一种增强的端到端管道方法,用于生物医学关系提取和新颖性检测,有效利用现有数据集并整合最先进的深度学习方法 | 提出了一种结合BERT模型和卷积神经网络的混合方法,用于生物医学关系提取和新颖性检测,显著提高了模型性能 | 尽管NER和EL模型的性能较高,但在文档级别的关系提取和新颖性检测任务仍然具有挑战性 | 提高生物医学关系提取和新颖性检测的准确性和效率 | 生物医学科学出版物中的实体和关系 | 自然语言处理 | NA | BERT, 卷积神经网络 | BERT, CNN | 文本 | 使用BioRED基准语料库进行训练 |
5000 | 2025-03-19 |
Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks
2024-08-05, Database : the journal of biological databases and curation
DOI:10.1093/database/baae066
PMID:39104284
|
研究论文 | 本文提出了一种基于深度学习的文本挖掘方法,从生物医学文献中提取标准化的miRNA-疾病关联 | 利用基于transformer的神经网络从文本数据中提取miRNA-疾病关系,构建了一个新的训练语料库,并通过远程监督扩展了该语料库 | 未提及具体的数据集大小或模型的具体架构细节 | 自动化地从生物医学文献中提取miRNA-疾病关联,以减少手动检索的工作量 | miRNA与疾病之间的关联 | 自然语言处理 | 神经退行性疾病 | 深度学习 | transformer-based neural networks | 文本 | 未提及具体样本数量 |