本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5001 | 2025-03-10 |
Enhancing HER2 testing in breast cancer: predicting fluorescence in situ hybridization (FISH) scores from immunohistochemistry images via deep learning
2025-Mar, The journal of pathology. Clinical research
DOI:10.1002/2056-4538.70024
PMID:40050230
|
研究论文 | 本文通过深度学习模型改进乳腺癌中的HER2检测,预测免疫组织化学(IHC)图像中的荧光原位杂交(FISH)评分 | 采用聚类约束注意力多实例深度学习模型,减少对反射性FISH测试的依赖,提高IHC测试的准确性 | FISH预测模型的准确性和敏感性较低,可能在某些情况下无法替代FISH测试 | 改进乳腺癌中的HER2检测方法,减少当前评分方法中的主观性和变异性 | 乳腺癌患者的HER2 IHC图像和FISH测试数据 | 数字病理学 | 乳腺癌 | 免疫组织化学(IHC),荧光原位杂交(FISH) | 聚类约束注意力多实例深度学习模型 | 图像 | 5,731张HER2 IHC图像,包括592例FISH测试病例 |
5002 | 2025-03-10 |
Image-based food groups and portion prediction by using deep learning
2025-Mar, Journal of food science
IF:3.2Q2
DOI:10.1111/1750-3841.70116
PMID:40052549
|
研究论文 | 本研究开发了一个基于深度学习的系统,用于自动分组和分类食物,并估计土耳其菜肴的份量 | 使用卷积神经网络(CNN)模型进行图像识别,实现了食物分类和份量估计的自动化,准确率分别达到80%和80.47% | 研究仅针对土耳其菜肴,可能不适用于其他文化或地区的食物 | 开发一个自动测量食物消费的系统,以帮助诊断和解决营养问题,减少营养不良的风险 | 土耳其菜肴 | 计算机视觉 | 肥胖和高血压 | 深度学习 | CNN | 图像 | 土耳其菜肴样本 |
5003 | 2025-03-10 |
Identifying Research Priorities in Digital Education for Health Care: Umbrella Review and Modified Delphi Method Study
2025-Feb-19, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/66157
PMID:39969988
|
综述 | 本研究通过伞形综述和改良德尔菲法,确定了医疗保健数字教育领域的研究优先事项 | 采用伞形综述和改良德尔菲法结合的方法,系统性地识别和优先排序医疗保健数字教育的研究空白 | 研究依赖于现有文献的质量和覆盖范围,且专家共识可能受参与者背景和经验的影响 | 确定数字教育在医疗保健领域的有效性证据缺口,并识别未来研究的优先领域 | 医疗保健专业人员的数字教育 | 数字病理学 | NA | 伞形综述,改良德尔菲法 | NA | 文献数据 | 217篇系统综述或元分析论文,42位专家参与德尔菲过程 |
5004 | 2025-03-10 |
Understanding the Engagement and Interaction of Superusers and Regular Users in UK Respiratory Online Health Communities: Deep Learning-Based Sentiment Analysis
2025-02-13, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/56038
PMID:39946690
|
研究论文 | 本研究通过深度学习情感分析,探讨了英国呼吸系统在线健康社区中超级用户与普通用户的互动和情感分布 | 使用预训练的BioBERT模型进行情感分析,并针对COVID-19 Twitter数据集进行微调,以解决健康相关标注数据稀缺的问题 | 研究依赖于特定时间段的数据(2006-2016年和2012-2016年),且仅针对两个特定的在线健康社区 | 了解呼吸系统在线健康社区中普通用户与超级用户互动的情感分布和动态 | 英国呼吸系统在线健康社区的用户 | 自然语言处理 | 呼吸系统疾病 | 情感分析 | BioBERT | 文本 | 两个在线健康社区的数据(Asthma UK和British Lung Foundation) |
5005 | 2025-03-10 |
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025-Jan-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85866-7
PMID:39799225
|
研究论文 | 本研究旨在通过结合机器学习和深度学习方法改进网络安全中的入侵检测 | 结合了多种机器学习(如SVM、KNN、RF、DT)和深度学习(如LSTM、ANN)模型,并引入了模糊聚类技术,以提高入侵检测的准确性和效率 | 未提及具体的样本大小或数据集细节,可能限制了结果的普适性 | 提高网络安全性,通过改进入侵检测系统(IDS)来识别和预防网络攻击 | 网络流量数据 | 机器学习 | NA | 模糊聚类 | SVM, KNN, RF, DT, LSTM, ANN | 网络流量数据 | NA |
5006 | 2025-03-10 |
Deep learning-driven ultrasound equipment quality assessment with ATS-539 phantom data
2025-Jan, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105698
PMID:39541619
|
研究论文 | 本研究提出了一种基于深度学习的双阶段框架,用于客观评估超声图像质量,使用ATS-539体模数据 | 引入双阶段深度学习框架,结合逻辑回归模型,实现超声图像质量的定量和客观评估 | 依赖于体模数据,可能无法完全反映真实临床环境中的图像质量 | 开发一种客观评估超声图像质量的方法,以提高诊断准确性 | 超声图像质量 | 计算机视觉 | NA | 深度学习 | 分类模型、逻辑回归模型 | 图像 | ATS-539体模数据 |
5007 | 2025-03-10 |
Advances in analytical approaches for background parenchymal enhancement in predicting breast tumor response to neoadjuvant chemotherapy: A systematic review
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0317240
PMID:40053513
|
系统综述 | 本文系统综述了背景实质增强(BPE)分析在预测乳腺癌对新辅助化疗(NAC)反应中的最新进展 | 从单时间点BPE分析转向纵向BPE分析,揭示了现有方法的不足,并提出了结合深度学习等先进AI技术的改进方向 | 现有纵向BPE分析方法存在数据缺失、手动分割全乳感兴趣区域、过度依赖传统统计方法等问题,影响了预测的准确性和及时性 | 评估BPE分析在预测乳腺癌对新辅助化疗反应中的可靠性和有效性,以促进个性化治疗策略的发展 | 接受新辅助化疗的乳腺癌患者 | 数字病理学 | 乳腺癌 | 动态对比增强磁共振成像(DCE-MRI) | NA | 图像 | 78项研究中的13项符合纳入标准 |
5008 | 2025-03-10 |
An interpretable generative multimodal neuroimaging-genomics framework for decoding alzheimer's disease
2024-Nov-14, ArXiv
PMID:38947922
|
研究论文 | 本文提出了一种可解释的生成多模态神经影像-基因组学框架,用于解码阿尔茨海默病 | 提出了一种新的深度学习分类框架,采用循环生成对抗网络(cGAN)在潜在空间中填补缺失数据,并采用可解释的人工智能方法(XAI)提取输入特征的相关性 | 未明确提及具体限制 | 解码阿尔茨海默病的潜在机制,进行AD检测和MCI转化预测 | 阿尔茨海默病患者和轻度认知障碍(MCI)患者 | 数字病理学 | 老年病 | 结构性和功能性磁共振成像(sMRI/fMRI),单核苷酸多态性(SNPs) | 循环生成对抗网络(cGAN) | 神经影像数据,基因组数据 | 未明确提及具体样本数量 |
5009 | 2025-03-10 |
Quantitative CT Scan Analysis in Rheumatoid Arthritis-Related Interstitial Lung Disease
2024-Nov-09, Chest
IF:9.5Q1
DOI:10.1016/j.chest.2024.10.052
PMID:39528110
|
研究论文 | 本文探讨了深度学习基础的CT成像在评估类风湿性关节炎相关间质性肺病(RA-ILD)疾病严重程度、预测死亡率和识别疾病进展中的效用 | 使用数据驱动的纹理分析(DTA)方法对RA-ILD患者的CT扫描进行定量分析,首次将DTA纤维化评分与肺功能和生存率关联起来 | 研究样本量相对较小,特别是验证队列仅有50人,可能影响结果的普遍性 | 评估定量CT成像在RA-ILD中的临床应用价值,特别是作为疾病严重程度和死亡率的预测工具 | 类风湿性关节炎相关间质性肺病(RA-ILD)患者 | 数字病理学 | 类风湿性关节炎相关间质性肺病 | CT成像,数据驱动的纹理分析(DTA) | 深度学习 | CT图像 | 289名主要队列患者和50名验证队列患者 |
5010 | 2025-03-10 |
Diverging Effects of Violence Exposure and Psychiatric Symptoms on Amygdala-Prefrontal Maturation During Childhood and Adolescence
2024-Sep-07, Biological psychiatry. Cognitive neuroscience and neuroimaging
DOI:10.1016/j.bpsc.2024.08.003
PMID:39182725
|
研究论文 | 本研究探讨了童年和青春期暴力暴露与精神病症状对杏仁核-前额叶皮层(PFC)回路成熟的不同影响 | 揭示了暴力暴露和精神病症状对杏仁核-PFC回路成熟的不同影响,提出了适应性和非适应性神经发育机制的差异 | 研究样本仅限于费城神经发育队列(PNC),可能无法完全代表其他人群 | 探讨暴力暴露和精神病症状对杏仁核-PFC回路成熟的影响 | 1133名青少年 | 神经科学 | 精神疾病 | 深度学习 | 深度学习模型 | 脑功能连接数据 | 1133名青少年 |
5011 | 2025-03-10 |
Data-driven fine-grained region discovery in the mouse brain with transformers
2024-Jun-13, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.05.592608
PMID:38766132
|
研究论文 | 本文开发了一种无监督训练方案和基于transformer的深度学习架构,用于利用空间转录组学数据检测小鼠全脑的空间区域 | 提出了一种新的transformer深度学习架构,能够从粗到细粒度地识别小鼠大脑中的空间区域,并发现了一些以前未分类的亚区域 | NA | 研究小鼠大脑的空间组织 | 小鼠大脑 | 数字病理学 | NA | 空间转录组学 | transformer | 空间转录组学数据 | 多个小鼠的全脑数据 |
5012 | 2025-03-10 |
Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0303278
PMID:38771733
|
研究论文 | 本文通过应用梯度加权类激活映射(Grad-CAM)等方法,提高了基于fMRI的3D-VGG16网络在阿尔茨海默病(AD)诊断中的可解释性 | 本文的创新点在于使用多种静息态功能活动图(如ALFF、fALFF、ReHo和VMHC)来降低fMRI数据的复杂性,并采用3D-VGG16网络进行AD分类,同时通过GAP层缓解过拟合问题 | 本文的局限性在于手动特征提取方法可能增加模型负担,且仅针对AD和正常对照组进行了研究,未涉及其他神经系统疾病 | 研究目的是探索模型在预测时主要关注的大脑感兴趣区域(ROI),以及AD患者和正常对照组之间这些ROI的差异 | 研究对象为阿尔茨海默病患者和正常对照组 | 数字病理学 | 阿尔茨海默病 | fMRI | 3D-VGG16 | 图像 | 未提及具体样本数量 |
5013 | 2025-03-10 |
Fibration symmetry uncovers minimal regulatory networks for logical computation in bacteria
2023-Oct-17, ArXiv
PMID:37904746
|
研究论文 | 本文通过对称纤维化方法简化了细菌的基因调控网络,保留了信息流并突出了网络的计算能力 | 使用对称纤维化方法简化复杂的生物系统,揭示细菌基因调控网络的计算核心 | NA | 研究细菌基因调控网络的计算能力和信息传递机制 | 细菌的基因调控网络 | 生物信息学 | NA | 对称纤维化方法 | NA | 基因调控网络数据 | NA |
5014 | 2025-03-10 |
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-022-07640-3
PMID:35909203
|
研究论文 | 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 | 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 | 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 | 胃癌患者 | 计算机视觉 | 胃癌 | 计算机断层扫描(CT) | ResNet50, 随机森林(RF) | 图像 | 347名患者(训练队列:242,测试队列:105) |
5015 | 2025-03-10 |
Deep Learning Identifies Cardiomyocyte Nuclei With High Precision
2020-08-14, Circulation research
IF:16.5Q1
DOI:10.1161/CIRCRESAHA.120.316672
PMID:32486999
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
5016 | 2025-03-09 |
Self-Supervised High-Order Information Bottleneck Learning of Spiking Neural Network for Robust Event-Based Optical Flow Estimation
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3510627
PMID:40030563
|
研究论文 | 本文提出了一种基于脉冲神经网络(SNN)的自监督高阶信息瓶颈学习算法SeLHIB,用于在噪声环境下鲁棒地估计基于事件的光流 | 首次提出了基于SNN的自监督信息瓶颈学习策略,并开发了非线性和高阶信息瓶颈学习算法,以增强相关信息的提取和消除冗余 | 现有SNN架构在训练过程中存在泛化能力和鲁棒性不足的问题,特别是在噪声场景中 | 提高基于事件的光流估计的泛化能力和鲁棒性,特别是在噪声环境下 | 基于事件的光流估计 | 计算机视觉 | NA | 自监督学习算法 | SNN(脉冲神经网络) | 事件相机输入 | NA |
5017 | 2025-03-09 |
Quantum Gated Recurrent Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519605
PMID:40030602
|
研究论文 | 本文提出了一种量子门控循环神经网络(QGRNNs)模型,旨在解决传统循环神经网络中的梯度消失和爆炸问题,并展示了其在序列学习任务中的有效性 | 将门控机制自然集成到量子神经网络的变分ansatz电路框架中,解决了传统循环神经网络的梯度消失和爆炸问题,并有效缓解了贫瘠高原现象 | NA | 探索量子神经网络(QNNs)的量子优势,并解决传统循环神经网络中的梯度消失和爆炸问题 | 量子门控循环神经网络(QGRNNs) | 量子机器学习 | NA | 量子计算 | 量子门控循环神经网络(QGRNNs) | 序列数据 | NA |
5018 | 2025-03-09 |
Glissando-Net: Deep Single View Category Level Pose Estimation and 3D Reconstruction
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519674
PMID:40030789
|
研究论文 | 本文提出了一种名为Glissando-Net的深度学习模型,用于从单个RGB图像中同时估计类别级物体的姿态并重建其3D形状 | Glissando-Net通过两个联合训练的自动编码器(一个用于RGB图像,另一个用于点云)实现了更准确的3D形状和姿态预测,并引入了2D-3D特征交互和直接预测3D形状与姿态的设计 | 在测试阶段,3D点云的编码器被丢弃,可能限制了模型在某些场景下的表现 | 研究目标是从单个RGB图像中同时估计物体的姿态并重建其3D形状 | 研究对象是类别级物体 | 计算机视觉 | NA | 深度学习 | 自动编码器(Auto-encoders) | RGB图像和点云数据 | NA |
5019 | 2025-03-09 |
Latent Weight Quantization for Integerized Training of Deep Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3527498
PMID:40030978
|
研究论文 | 本文提出了一种用于深度神经网络整数化训练的潜在权重量化方案,旨在减少量化对训练过程的扰动 | 首次提出了一种通用的整数化训练潜在权重量化方案,通过残差量化和优化的双量化器最小化量化扰动 | 未明确提及具体限制,但可能涉及硬件实现的复杂性和对不同架构的适应性 | 提高深度神经网络整数化训练的效率和性能 | 深度神经网络,包括ResNets、MobileNetV2和Transformers | 机器学习 | NA | 残差量化和双量化器 | ResNets, MobileNetV2, Transformers | 图像和文本 | 未明确提及具体样本数量,但涉及多种架构和任务 |
5020 | 2025-03-09 |
Torsion Graph Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3528449
PMID:40030998
|
研究论文 | 本文提出了一种新的图神经网络模型TorGNN,通过引入解析扭转来增强图神经网络对非欧几里得数据的分析能力 | TorGNN模型创新性地使用解析扭转作为边权重,以捕捉图局部结构的拓扑信息,从而提升图神经网络的性能 | NA | 提升图神经网络在非欧几里得数据分析中的性能 | 图神经网络模型及其在链接预测和节点分类任务中的应用 | 机器学习 | NA | 解析扭转 | 图神经网络(GNN) | 图数据 | 16种不同类型的网络用于链接预测任务,4种类型的网络用于节点分类任务 |