本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5221 | 2025-04-04 |
Automated chick gender determination using optical coherence tomography and deep learning
2025-Mar-15, Poultry science
IF:3.8Q1
DOI:10.1016/j.psj.2025.105033
PMID:40106909
|
研究论文 | 本研究提出了一种结合光学相干断层扫描(OCT)和深度学习的新方法,用于高分辨率、非侵入性的雏鸡性别鉴定 | 首次将OCT与深度学习结合用于自动化雏鸡性别鉴定,提供了一种可扩展、实时的替代方案 | 模型的准确率为79%,仍有提升空间 | 优化家禽生产中的雏鸡性别分类 | 雏鸡 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | CNN | 图像 | NA |
5222 | 2025-04-04 |
Cropformer: An interpretable deep learning framework for crop genomic prediction
2025-Mar-10, Plant communications
IF:9.4Q1
DOI:10.1016/j.xplc.2024.101223
PMID:39690739
|
research paper | 介绍了一个名为Cropformer的可解释深度学习框架,用于作物基因组预测和表型预测 | 结合了卷积神经网络和多种自注意力机制,提高了预测精度和模型的可解释性 | 未提及具体的局限性 | 加速优良基因型的识别和育种周期的缩短 | 五种主要作物:玉米、水稻、小麦、谷子和番茄 | machine learning | NA | genomic selection (GS) | CNN与自注意力机制结合的深度学习框架 | 基因组数据 | 超过20个性状的五种主要作物数据 |
5223 | 2025-04-04 |
A deep-learning model to predict the completeness of cytoreductive surgery in colorectal cancer with peritoneal metastasis☆
2025-Mar-10, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
DOI:10.1016/j.ejso.2025.109760
PMID:40174333
|
研究论文 | 开发了一种名为DeAF的深度学习模型,用于预测结直肠癌腹膜转移患者细胞减灭术的完整性 | 提出了一种新型AI框架DeAF,通过解耦特征对齐和融合来辅助选择适合CRS的患者并预测手术完整性 | 研究样本量有限(186例患者),且所有数据来自三级医院,可能影响模型的普遍适用性 | 改善结直肠癌腹膜转移患者细胞减灭术的患者选择和手术完整性预测 | 结直肠癌伴腹膜转移患者 | 数字病理学 | 结直肠癌 | 深度学习 | DeAF框架(基于Simsiam算法) | CT图像和临床病理参数 | 186例来自4家三级医院的结直肠癌伴腹膜转移患者 |
5224 | 2025-04-04 |
Kolmogorov-Arnold networks for genomic tasks
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf129
PMID:40163820
|
research paper | 本文探讨了Kolmogorov-Arnold网络(KANs)在基因组任务中替代多层感知机(MLPs)的潜力 | 首次将线性KANs(LKANs)和卷积KANs(CKANs)应用于基因组序列的分类和生成任务 | CKANs在处理大量参数时存在扩展性问题,且KANs在不同深度学习架构中的潜力需进一步研究 | 评估KANs在基因组任务中的性能表现 | 基因组序列 | machine learning | NA | deep learning | LKANs, CKANs, MLP | genomic sequences | 三个基因组基准数据集:Genomic Benchmarks、Genome Understanding Evaluation和Flipon Benchmark |
5225 | 2025-04-04 |
Introduction to Artificial Intelligence for General Surgeons: A Narrative Review
2025-Mar, Cureus
DOI:10.7759/cureus.79871
PMID:40171361
|
review | 本文是一篇叙述性综述,旨在向普通外科医生介绍人工智能(AI)的基础知识及其在胸腹部创伤中的应用 | 综述了AI在创伤护理中的潜在应用,特别是在诊断、风险预测和决策支持方面,并讨论了将AI整合到澳大利亚医疗系统中的意义 | 当前AI在临床实践中的应用仍有限,需要未来进行前瞻性和本地验证的研究 | 教育普通外科医生了解AI的基础知识及其在创伤护理中的应用 | 普通外科医生及AI在胸腹部创伤中的应用 | machine learning | trauma | machine learning, deep learning, natural language processing, computer vision | NA | NA | NA |
5226 | 2025-04-04 |
TNFR-LSTM: A Deep Intelligent Model for Identification of Tumour Necroses Factor Receptor (TNFR) Activity
2025 Jan-Dec, IET systems biology
IF:1.9Q3
DOI:10.1049/syb2.70007
PMID:40156875
|
research paper | 开发了一种名为DEEP-TNFR的深度学习模型,用于预测肿瘤坏死因子受体(TNFR)的活性 | 提出了一种结合相对和反向位置特征以及统计矩的先进模型,并在多种深度学习分类器中验证了LSTM的最高效能 | 未提及模型在更广泛数据集上的泛化能力或实际临床应用中的潜在限制 | 提高肿瘤坏死因子受体(TNFR)活性识别的准确性 | 肿瘤坏死因子(TNFs)及其与受体的相互作用 | machine learning | cancer development | 深度学习 | LSTM, Bi-LSTM, GRU, CNN, RNN, FCN | 生物分子数据 | 使用了一个公认的基准数据集,但未提及具体样本数量 |
5227 | 2025-04-04 |
Model interpretability on private-safe oriented student dropout prediction
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0317726
PMID:40163446
|
研究论文 | 本文提出了一种改进的预处理核诱导点数据蒸馏技术(PP-KIPDD),用于预测学生辍学风险,同时保护隐私并提高模型可解释性 | 首次引入PP-KIPDD技术重构模拟学生信息分布的新样本,防止隐私泄露,并利用SHAP值增强模型可解释性 | 未提及具体样本量或实验验证范围 | 解决学生辍学预测中的隐私保护和模型可解释性问题 | 学生辍学风险预测 | 机器学习 | NA | PP-KIPDD, SHAP | NA | 表格数据 | NA |
5228 | 2025-04-04 |
An Early Thyroid Screening Model Based on Transformer and Secondary Transfer Learning for Chest and Thyroid CT Images
2025 Jan-Dec, Technology in cancer research & treatment
IF:2.7Q3
DOI:10.1177/15330338251323168
PMID:40165465
|
research paper | 提出一种基于Transformer和二次迁移学习的早期甲状腺筛查模型,用于胸部及甲状腺CT图像分析 | 结合Transformer DNN和迁移学习技术,整合时间序列数据,解决小样本和高噪声问题 | 数据集有限,样本量较小,噪声较高 | 提高甲状腺癌早期筛查的准确性和效率 | 240名来自中国广东和新疆的患者的增强CT扫描图像数据 | digital pathology | thyroid cancer | enhanced CT scans | Transformer DNN, transfer learning | CT images | 240 patients |
5229 | 2025-04-04 |
Evaluating Sex and Age Biases in Multimodal Large Language Models for Skin Disease Identification from Dermatoscopic Images
2025, Health data science
DOI:10.34133/hds.0256
PMID:40170800
|
research paper | 评估多模态大语言模型在皮肤疾病识别中的性别和年龄偏见 | 首次评估了多模态大语言模型(如ChatGPT-4和LLaVA-1.6)在皮肤疾病识别中的性别和年龄偏见,并与传统的CNN和视觉Transformer模型进行了比较 | 研究使用的数据集虽然较大(约10,000张图像),但未来需要使用更大、更多样化的数据集来进一步验证模型的可靠性和公平性 | 探索多模态大语言模型在皮肤疾病识别中的实际应用,并评估其性别和年龄偏见 | 皮肤疾病(黑色素瘤、黑色素细胞痣和良性角化病样病变) | digital pathology | skin disease | multimodal large language models (LLMs), CNN, vision transformer | ChatGPT-4, LLaVA-1.6, VGG16, ResNet50, Model Derm, Swin-B | image | 约10,000张皮肤镜图像 |
5230 | 2025-04-04 |
Cnidaria herd optimized fuzzy C-means clustering enabled deep learning model for lung nodule detection
2025, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2025.1511716
PMID:40171113
|
research paper | 提出了一种结合Cnidaria群体优化模糊C均值聚类和深度学习的模型,用于有效检测肺结节 | 结合Cnidaria群体优化算法(CHO)和双向长短期记忆模型(CHSTM),以及优化的模糊C均值聚类算法和Resnet-101深度学习模型,提高了肺结节检测的准确性和性能 | 现有方法在可扩展性、鲁棒性、数据可用性和误检率方面存在一定限制 | 提高肺结节检测的准确性和性能 | 肺结节 | digital pathology | lung cancer | Cnidaria Herd Optimization (CHO) algorithm, Bi-directional Long Short-Term Memory (CHSTM), fuzzy C-means clustering, Resnet-101 | CHSTM, Resnet-101 | medical images | LUNA-16数据集和LIDC/IDRI数据集 |
5231 | 2025-04-04 |
Smart insole-based abnormal gait identification: Deep sequential networks and feature ablation study
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251332999
PMID:40171146
|
research paper | 该研究利用智能鞋垫传感器数据,通过深度序列网络和特征消融研究,对九种步态(包括一种正常和八种异常步态)进行分类 | 结合多种传感器特征(压力信号、IMU数据等)进行步态分类,并通过消融研究验证不同特征组合的效果 | 未提及样本的多样性或跨数据集验证的局限性 | 开发高效的步态分类方法以评估行走能力 | 使用智能鞋垫传感器收集的步态数据 | digital health | gait-related disorders | 压力传感器和惯性测量单元(IMU) | deep sequential networks | sensor data(压力信号、IMU数据等) | 未明确提及具体样本数量,仅描述为受试者进行15米步行测试 |
5232 | 2025-04-04 |
Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis
2025, Frontiers in endocrinology
IF:3.9Q2
DOI:10.3389/fendo.2025.1485311
PMID:40171193
|
meta-analysis | 系统回顾和荟萃分析深度学习算法在光学相干断层扫描(OCT)和视网膜图像中检测糖尿病视网膜病变(DR)的有效性 | 首次通过荟萃分析评估深度学习在OCT和视网膜图像中检测DR的准确性和可靠性 | 数据集标准化不足,模型可解释性有待提高,且需在多样化人群中进一步验证性能 | 评估深度学习算法在检测糖尿病视网膜病变中的准确性和临床适用性 | 光学相干断层扫描(OCT)和视网膜图像 | digital pathology | diabetic retinopathy | deep learning | NA | image | 188268张视网膜图像和OCT扫描 |
5233 | 2025-04-04 |
Quantitative analysis of studies that use artificial intelligence on thyroid cancer: a 20-year bibliometric analysis
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1525650
PMID:40171256
|
研究论文 | 通过文献计量分析评估人工智能在甲状腺癌领域的研究进展、热点和未来方向 | 首次对过去20年人工智能在甲状腺癌领域的应用进行全面的文献计量分析,揭示了研究热点和发展趋势 | 仅基于Web of Science数据库的文献,可能未涵盖所有相关研究 | 评估人工智能在甲状腺癌领域的应用现状和发展趋势 | 2004-2024年间发表的956篇关于人工智能在甲状腺癌中应用的文献 | 数字病理 | 甲状腺癌 | 文献计量分析 | NA | 文献数据 | 956篇文献 |
5234 | 2025-04-04 |
Knowledge graph and its application in the study of neurological and mental disorders
2025, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2025.1452557
PMID:40171303
|
综述 | 本文综述了知识图谱在神经和精神障碍研究中的应用,并探讨了医学知识图谱的现状及其面临的挑战 | 结合大数据和深度学习技术,探讨知识图谱在神经和精神障碍研究中的潜力 | 仍需克服知识图谱在医学领域应用中的障碍和限制 | 研究知识图谱在神经和精神障碍领域的应用及其潜力 | 神经障碍(如阿尔茨海默病和帕金森病)和精神障碍(如抑郁症和焦虑症) | 自然语言处理 | 神经和精神障碍 | 知识图谱(KG) | NA | 医学数据 | NA |
5235 | 2025-04-04 |
Bridging technology and ecology: enhancing applicability of deep learning and UAV-based flower recognition
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1498913
PMID:40171479
|
研究论文 | 本研究将无人机和深度学习技术应用于生态研究,特别是花卉识别,以简化这些技术的实际应用 | 更新目标检测工具箱至TensorFlow 2,提升性能并确保与新软件包的兼容性,同时评估了三种目标检测模型在无人机花卉图像上的应用潜力 | 在密集植被中检测花卉及应对环境变化方面仍存在挑战 | 增强深度学习和无人机技术在生态研究中的适用性,特别是花卉资源的监测 | 花卉丰富的草地无人机图像 | 计算机视觉 | NA | 无人机成像、深度学习 | Faster R-CNN, SSD, EfficientDet | 图像 | 两个无人机图像数据集 |
5236 | 2025-04-04 |
Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models
2024-Nov, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03451-7
PMID:39225815
|
research paper | 本研究通过可解释的人工智能模型,基于MRI图像对原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(GBM)进行术前区分 | 结合了放射组学模型和深度学习模型,提出了最优的Max-Fusion模型,并利用SHAP和Grad-CAM进行可解释性分析 | 研究为回顾性分析,样本量相对有限(261例患者),且仅来自两个医疗中心 | 探索基于MRI的深度学习和放射组学模型在术前区分PCNSL和GBM中的有效性和适用性 | 261例PCNSL和GBM患者的MRI图像和临床数据 | digital pathology | brain tumor | MRI | MobileVIT, ConvNeXt, Max-Fusion Model | image | 261例患者(训练集153例,外部测试集108例) |
5237 | 2025-04-04 |
Evaluating Deep Learning Techniques for Detecting Aneurysmal Subarachnoid Hemorrhage: A Comparative Analysis of Convolutional Neural Network and Transfer Learning Models
2024-07, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.04.168
PMID:38710407
|
研究论文 | 本研究评估了卷积神经网络(CNN)和基于CNN的迁移学习模型在区分动脉瘤性蛛网膜下腔出血(SAH)和非动脉瘤性SAH中的有效性 | 采用迁移学习方法缓解了传统技术的时间限制,并展示了优越的性能 | NA | 评估深度学习技术在SAH检测中的有效性 | 动脉瘤性SAH和非动脉瘤性SAH患者 | 数字病理学 | 心血管疾病 | 深度学习 | CNN, Inception-V3, EfficientNetB4 | 医学影像 | 203名患者(123名动脉瘤性SAH和80名非动脉瘤性SAH),共23,393张DICOM图像 |
5238 | 2025-04-04 |
Deepdefense: annotation of immune systems in prokaryotes using deep learning
2024-Jan-02, GigaScience
IF:11.8Q1
DOI:10.1093/gigascience/giae062
PMID:39388605
|
研究论文 | 使用深度学习对原核生物中的免疫系统进行注释和分类 | 开发了名为Deepdefense的算法,通过深度学习模型预测免疫系统相关蛋白,并结合校准方法提高准确性,能够识别已知和潜在的新型免疫系统蛋白 | 现有方法通常基于封闭世界假设,而基因组学中新样本的出现可能超出训练数据范围 | 开发一种自动检测和分类原核生物免疫系统蛋白的算法 | 原核生物(古菌和细菌)的免疫系统蛋白 | 机器学习 | NA | 深度学习 | 神经网络 | 基因组数据 | NA |
5239 | 2025-04-04 |
Accurate prediction of protein tertiary structural changes induced by single-site mutations with equivariant graph neural networks
2023-Oct-13, bioRxiv : the preprint server for biology
DOI:10.1101/2023.10.03.560758
PMID:37873289
|
research paper | 开发了一种基于等变图神经网络(EGNN)的深度学习方法,用于直接预测单点突变引起的蛋白质三级结构变化 | 首次使用等变图神经网络(EGNN)直接预测单点突变引起的蛋白质三级结构变化,并显著优于广泛使用的蛋白质结构预测方法AlphaFold | 未提及该方法在复杂突变或多点突变情况下的表现 | 研究蛋白质单点突变引起的三级结构变化 | 蛋白质及其单点突变体 | machine learning | NA | equivariant graph neural networks (EGNN) | EGNN | protein tertiary structure data | NA |
5240 | 2025-04-04 |
Rapid 3D T1 mapping using deep learning-assisted Look-Locker inversion recovery MRI
2023-08, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.29672
PMID:37125662
|
研究论文 | 提出了一种基于深度学习的快速3D T1映射方法,无需延迟时间即可进行MRI成像 | 利用深度学习学习T1*到T1的转换,消除了传统方法中需要的延迟时间,从而缩短了扫描时间 | 训练数据仅包含39个GraspT1-TD6数据集和14个GraspT1-TD0数据集,样本量相对较小 | 开发一种更高效和稳健的3D LLIR T1映射方法 | MRI成像中的T1映射 | 医学影像分析 | NA | 深度学习辅助的Look-Locker反转恢复MRI | 深度学习模型 | MRI图像 | 39个GraspT1-TD6数据集和14个GraspT1-TD0数据集 |