本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5321 | 2025-07-23 |
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
DOI:10.1002/cyto.a.24917
PMID:39982036
|
研究论文 | 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 | 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的全部信息内容,且对不同染色模式和成像协议具有鲁棒性 | NA | 开发一种定量测量方法,用于在不同数据集和癌症类型之间进行有意义的比较 | 癌细胞核的形态学特征 | 数字病理学 | 癌症(包括肝癌、甲状腺癌、肺癌和皮肤癌等) | 最优传输、特征提取、深度学习 | TBM框架 | 图像 | 大型数据集(如TCGA和人类蛋白质图谱) | NA | NA | NA | NA |
5322 | 2025-07-23 |
A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records
2025-Jan-23, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.01.21.25320916
PMID:39974062
|
研究论文 | 开发了一个基于Transformer的临床结果预测模型TECO,用于利用住院电子健康记录(EHR)数据预测ICU死亡率 | 提出了一个Transformer基础的模型TECO,在预测ICU死亡率方面优于专有指标和传统机器学习模型,并能识别与结果相关的临床可解释特征 | 需要进一步验证 | 开发一个深度学习模型用于临床结果预测 | 住院患者的电子健康记录数据 | 机器学习 | COVID-19, ARDS, 败血症 | 深度学习 | Transformer | 电子健康记录(EHR) | COVID-19患者2579人,ARDS队列2799人,败血症队列6622人 | NA | NA | NA | NA |
5323 | 2025-10-06 |
BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans
2025-Jan-11, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.22.533696
PMID:36993540
|
研究论文 | 提出一种名为BIBSNet的深度学习婴儿脑部图像分割网络,用于MRI扫描中的婴儿脑组织分割 | 开发了首个开源、社区驱动的婴儿脑部分割神经网络,结合数据增强和大规模手动标注图像,在婴儿脑部MRI分割任务中表现优于传统方法 | 研究样本仅包含0-8个月龄的婴儿,未验证在更大年龄范围儿童中的适用性 | 开发能够准确分割婴儿脑部MRI图像的深度学习模型,以支持典型和非典型脑发育研究 | 0-8个月龄婴儿的脑部MRI图像 | 医学图像分析 | 脑发育疾病 | 磁共振成像(MRI) | 深度学习神经网络 | 医学图像 | 90名参与者的脑部MRI图像,年龄范围0-8个月 | NA | BIBSNet | Dice相似系数(DSC), 皮质厚度, 静息态连接性, 脑区体积 | NA |
5324 | 2025-07-23 |
Step Width Estimation in Individuals With and Without Neurodegenerative Disease via a Novel Data-Augmentation Deep Learning Model and Minimal Wearable Inertial Sensors
2025-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3470310
PMID:39331558
|
研究论文 | 提出了一种新型数据增强深度学习模型,用于通过最小化可穿戴惯性传感器估计步宽 | 使用数据增强的深度学习模型和最小化可穿戴惯性传感器(IMUs)来估计步宽,克服了传统方法的高成本和耗时问题 | 研究样本量较小,仅包括12名神经退行性疾病患者和17名健康个体 | 开发一种便携式步宽监测方法,用于神经退行性疾病患者和健康个体的康复训练和动态平衡控制 | 神经退行性疾病患者(SCA3)和健康个体 | 机器学习 | 神经退行性疾病 | 数据增强深度学习模型 | 深度学习模型 | 惯性传感器数据 | 12名神经退行性疾病患者和17名健康个体 | NA | NA | NA | NA |
5325 | 2025-07-23 |
Combination of facial and nose features of Amur tigers to determine age
2025-Jan, Integrative zoology
IF:3.5Q1
DOI:10.1111/1749-4877.12817
PMID:38509845
|
研究论文 | 通过结合东北虎的面部和鼻子特征,利用深度学习模型进行年龄测定 | 发现老虎鼻子上的黑色斑点面积与年龄呈正相关,并首次将面部和鼻子特征结合用于年龄测定 | 准确率为87.81%,仍有提升空间 | 开发一种基于图像特征的东北虎年龄测定方法 | 东北虎的面部和鼻子特征 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
5326 | 2025-07-23 |
Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production
2025, Discover imaging
DOI:10.1007/s44352-025-00006-1
PMID:40098681
|
研究论文 | 本研究利用深度学习成像分析技术,识别与致癌物产生相关的细菌代谢状态 | 首次使用深度学习成像分析方法区分产生和不产生致癌物DCA的C. scindens细胞状态 | 研究仅针对C. scindens和两种Bacteroides物种,未涵盖其他可能相关的肠道细菌 | 探索成像方法在识别与结直肠癌相关的细菌代谢状态中的应用 | C. scindens细菌及其在不同培养条件下的代谢状态 | 数字病理学 | 结直肠癌 | 光学显微镜成像 | CNN, DenseNet, ResNet, nnU-Net | 图像 | 四种培养条件下的C. scindens图像数据 | NA | NA | NA | NA |
5327 | 2025-07-23 |
Gross tumor volume confidence maps prediction for soft tissue sarcomas from multi-modality medical images using a diffusion model
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100734
PMID:40123775
|
研究论文 | 本研究开发了一种基于扩散模型的深度学习技术,用于从多模态医学图像中自动预测软组织肉瘤的总肿瘤体积(GTV)置信图 | 首次使用扩散模型预测GTV置信图,并考虑了读者间和读者内的变异性 | 样本量较小(49例患者),且仅使用了公开数据集 | 开发自动化的GTV勾画技术以提高放疗计划的可重复性 | 软组织肉瘤患者的多模态医学图像(FDG-PET、CT和MRI) | 数字病理 | 软组织肉瘤 | 扩散模型 | 扩散模型 | 医学图像(FDG-PET、CT和MRI) | 49例患者的多模态医学图像数据 | NA | NA | NA | NA |
5328 | 2025-07-23 |
MMETHANE: interpretable AI for predicting host status from microbial composition and metabolomics data
2024-Dec-14, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.13.628441
PMID:39713330
|
研究论文 | 开发了一个名为MMETHANE的开源软件包,用于从微生物组和代谢组数据预测宿主状态 | MMETHANE结合了先验生物学知识,包括系统发育和化学关系,并具有内在可解释性,能输出解释其决策的英文规则集 | NA | 开发计算工具以链接微生物组组成和代谢物数据到宿主状态 | 微生物组组成和代谢物数据 | 机器学习 | 炎症性肠病 | 微生物测序和代谢组学测量 | 深度学习模型 | 微生物组和代谢组数据 | 六个数据集 | NA | NA | NA | NA |
5329 | 2025-07-23 |
SAUSI: an integrative assay for measuring social aversion and motivation
2024-Dec-07, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.13.594023
PMID:38798428
|
研究论文 | 介绍了一种名为SAUSI的新型行为任务,用于全面评估小鼠的社会厌恶行为 | 开发了整合社会动机、犹豫、决策和自由互动元素的新行为任务SAUSI,克服了传统方法的局限性 | 目前仅在小鼠模型中验证,尚未在人类或其他动物模型中测试 | 研究社会厌恶行为的生物行为机制 | 小鼠 | 行为神经科学 | 社交焦虑症、自闭症谱系障碍 | 深度学习分析 | NA | 行为数据 | 未明确说明小鼠数量 | NA | NA | NA | NA |
5330 | 2025-07-23 |
Risk-Specific Training Cohorts to Address Class Imbalance in Surgical Risk Prediction
2024-Dec-01, JAMA surgery
IF:15.7Q1
DOI:10.1001/jamasurg.2024.4299
PMID:39382865
|
研究论文 | 本研究评估了在手术风险预测中使用风险特异性训练队列解决类别不平衡问题的效果 | 通过针对高风险、中风险和低风险手术分别训练模型,提高了对低发生率并发症的预测性能 | 研究仅基于两家医院的数据,可能缺乏广泛代表性 | 评估风险特异性训练队列对手术风险预测模型性能的影响 | 109,445例住院手术患者 | 机器学习 | 手术并发症 | 深度学习 | 深度学习模型 | 临床手术数据 | 109,445例住院手术(来自佛罗里达大学健康系统两家医院) | NA | NA | NA | NA |
5331 | 2025-07-23 |
Overcoming artificial structures in resolution-enhanced Hi-C data by signal decomposition and multi-scale attention
2024-Oct-24, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.21.619560
PMID:39484541
|
研究论文 | 提出了一种名为SHARP的新方法,通过信号分解和多尺度注意力机制来克服分辨率增强Hi-C数据中的人工结构问题 | SHARP方法首次将Hi-C数据分解为三种信号类型,并仅对第三种信号类型应用深度学习,同时结合局部和全局注意力机制以捕获多尺度上下文信息 | 未明确提及具体限制,但可能涉及对新型数据类型的泛化能力或计算资源需求 | 提高Hi-C数据的分辨率增强准确性,避免人工结构的产生 | 基因组范围内的染色体构象捕获(Hi-C)数据 | 生物信息学 | NA | Hi-C技术、深度学习 | 多尺度注意力机制 | 基因组接触矩阵数据 | 未明确提及具体样本数量,但包括新样本和另一物种的数据 | NA | NA | NA | NA |
5332 | 2025-07-23 |
Postoperative facial prediction for mandibular defect based on surface mesh deformation
2024-10, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101973
PMID:39089509
|
研究论文 | 本研究介绍了一种基于表面网格变形的新型预测模型,用于预测下颌骨缺损患者的术后面部轮廓 | 采用表面网格理论和深度学习,区别于传统的点云方法,使用表面三角网格网格,通过MCRBM模型提取潜在变量生成三维变形场,提高了几何信息保存和可解释性 | NA | 提高下颌骨缺损重建术后面部轮廓预测的准确性 | 下颌骨缺损患者 | 计算机视觉 | 口腔颌面疾病 | 深度学习 | MCRBM | 三维网格数据 | NA | NA | NA | NA | NA |
5333 | 2025-07-23 |
A deep learning approach to detection of oral cancer lesions from intra oral patient images: A preliminary retrospective study
2024-10, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101975
PMID:39043293
|
research paper | 本研究评估了一种基于深度学习的计算机软件在检测口腔癌病变中的性能 | 使用YOLOv5架构开发的人工智能模型首次应用于口腔癌病变的检测 | 样本量较小(仅65张图像),且为回顾性研究 | 评估深度学习算法在口腔癌病变检测中的应用潜力 | 口腔鳞状细胞癌(OSCC)病变 | digital pathology | oral cancer | deep learning | YOLOv5 | image | 65张匿名回顾性口腔内患者图像(53张训练集,6张验证集,6张测试集) | NA | NA | NA | NA |
5334 | 2025-07-23 |
Generative Modeling of Molecular Dynamics Trajectories
2024-Sep-26, ArXiv
PMID:39398217
|
research paper | 本文介绍了利用生成模型学习分子动力学轨迹的灵活多任务替代模型 | 首次展示了基于生成模型的分子动力学轨迹建模,能够适应多种任务,如正向模拟、过渡路径采样和轨迹上采样,并初步探索了基于动力学的分子设计 | 仅在四肽模拟和蛋白质单体上进行了验证,尚未在更复杂的分子系统上测试 | 开发深度学习替代模型以降低分子动力学的计算成本 | 分子动力学轨迹 | machine learning | NA | 分子动力学 (MD) | generative model | 分子轨迹数据 | 四肽模拟和蛋白质单体 | NA | NA | NA | NA |
5335 | 2025-07-23 |
Small metal artifact detection and inpainting in cardiac CT images
2024-Sep-25, ArXiv
PMID:39398205
|
研究论文 | 开发了一种自动检测和修复心脏CT图像中金属伪影的深度学习方法 | 提出了结合2D U-Net和3D图像修复DL模型的新方法,用于自动检测和修复心脏CT中的金属伪影 | 方法主要针对已重建的CT图像,且需要人工标注金属伪影区域进行训练 | 提高心脏CT图像中金属伪影的检测和修复精度,以改善心脏运动分析 | 心脏CT图像中的金属伪影 | 数字病理 | 心血管疾病 | 深度学习 | 2D U-Net, 3D图像修复DL模型 | CT图像 | 12名患者的心电图门控4DCT扫描数据,以及148名患者的无伪影心脏CT数据用于合成数据集 | NA | NA | NA | NA |
5336 | 2025-07-23 |
Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae512
PMID:39413796
|
研究论文 | 本文提出了四种基于VAE的去混淆框架,用于多组学数据的聚类分析,有效减少混淆因素的影响并保留真实的生物学模式 | 创新性地开发了四种VAE去混淆框架,特别是条件多组学VAE (cXVAE),能够处理模拟的混淆效应并恢复生物学驱动的聚类结构 | 研究中提出的某些策略(如对抗训练)在去除混淆因素方面效果不足 | 开发去混淆框架以优化多组学数据的聚类分析,实现有意义的疾病亚型分类和患者分层 | 多组学数据和患者样本 | 机器学习 | 癌症 | 多组学数据分析 | VAE, cXVAE | 多组学数据 | 来自The Cancer Genome Atlas的真实多组学数据,50次重复评估 | NA | NA | NA | NA |
5337 | 2025-07-23 |
A robust deep learning model for the classification of dental implant brands
2024-09, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101818
PMID:38462066
|
研究论文 | 本研究探讨了深度学习技术在牙科种植体系统分类中的应用,通过全景X光片实现准确分类 | 提出了一种基于ConvNeXt的深度学习模型,在牙科种植体品牌分类中表现出色,准确率达到95.74% | 研究仅使用了6种牙科种植体系统作为原型,可能无法涵盖所有品牌 | 探索深度学习技术在牙科种植体系统分类中的应用,提高分类准确性和效率 | 牙科种植体系统 | 计算机视觉 | 牙科疾病 | 深度学习 | CNN, 包括VGG16、ResNet-50、EfficientNet和ConvNeXt | 图像(全景X光片) | 1258张来自牙科患者的全景X光片 | NA | NA | NA | NA |
5338 | 2025-07-23 |
The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review
2024-08-20, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/48320
PMID:39163096
|
综述 | 本文对利用深度学习和机器学习分析纵向电子健康记录(EHRs)进行疾病早期检测和预防的证据进行了范围综述 | 综述了ML和DL在纵向EHRs中的应用,特别是在疾病早期检测和预防方面的医学见解和临床益处 | 研究排除了技术焦点或使用影像或住院数据的研究,且基于文本EHRs的ML模型仍处于发展阶段 | 探讨ML和DL在纵向EHRs中支持疾病早期检测和预防的潜力 | 纵向电子健康记录(EHRs) | 机器学习 | 多种疾病(如糖尿病、肾脏疾病、循环系统疾病、精神和行为障碍等) | 机器学习(ML)、深度学习(DL) | RNN、LSTM | 文本(EHRs数据) | 20项研究(主要发表于2018年至2022年) | NA | NA | NA | NA |
5339 | 2025-07-23 |
Multimodal functional deep learning for multiomics data
2024-Jul-25, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae448
PMID:39285512
|
research paper | 提出了一种多模态功能深度学习(MFDL)方法,用于分析高维多组学数据 | MFDL方法通过深度神经网络的层次结构建模多组学变异与疾病表型之间的复杂关系,并利用功能数据分析技术处理高维组学数据 | 未明确提及具体局限性 | 开发新型分析方法以应对高维多组学数据分析的挑战 | 高维多组学数据 | machine learning | NA | functional data analysis, deep learning | deep neural networks | multiomics data | NA | NA | NA | NA | NA |
5340 | 2025-07-23 |
A Computed Tomography-Based Fracture Prediction Model With Images of Vertebral Bones and Muscles by Employing Deep Learning: Development and Validation Study
2024-07-12, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/48535
PMID:38995678
|
研究论文 | 本研究开发并验证了一种基于CT扫描的深度学习模型,用于预测椎骨骨折风险 | 结合椎骨和椎旁肌肉的CT图像,使用注意力卷积神经网络-循环神经网络模型进行骨折预测,相比仅使用骨图像或临床变量模型表现更优 | 研究样本主要来自特定时间段(2010-2019年)的患者,且女性比例较高 | 开发并验证基于CT图像的骨折预测模型 | 1214名患者的腹部CT图像(开发集)和495名患者(验证集) | 数字病理学 | 骨质疏松症 | CT扫描 | 注意力CNN-RNN | 医学图像 | 开发集1214名患者,验证集495名患者 | NA | NA | NA | NA |