深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24162 篇文献,本页显示第 5341 - 5360 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
5341 2025-03-11
ralphi: a deep reinforcement learning framework for haplotype assembly
2025-Feb-21, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为ralphi的深度强化学习框架,用于单倍型组装,该框架结合了深度学习的表示能力和强化学习,以准确地将读取片段分配到各自的单倍型集合中 ralphi框架首次将深度学习和强化学习结合用于单倍型组装,通过片段图的经典问题简化来设定强化学习的奖励目标 NA 研究目的是开发一种新的方法,以更准确地组装个体二倍体基因组的单倍型 个体二倍体基因组的单倍型 机器学习 NA ONT读取 深度强化学习 基因读取数据 来自1000 Genomes Project的基因组数据
5342 2025-03-11
Long-Term Carotid Plaque Progression and the Role of Intraplaque Hemorrhage: A Deep Learning-Based Analysis of Longitudinal Vessel Wall Imaging
2025-Feb-19, medRxiv : the preprint server for health sciences
研究论文 本研究利用深度学习技术分析颈动脉斑块长期进展及斑块内出血(IPH)的作用 首次使用深度学习分割管道在长期随访中识别IPH、量化IPH体积,并测量其对颈动脉斑块负担的影响 样本量较小(28名无症状颈动脉粥样硬化患者),且仅针对无症状患者进行研究 评估IPH对颈动脉斑块负担长期进展的影响 无症状颈动脉粥样硬化患者 数字病理 心血管疾病 多对比磁共振血管壁成像(VWI) 深度学习分割管道 图像 28名无症状颈动脉粥样硬化患者,共50条动脉
5343 2025-03-11
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles
2025-Feb-15, bioRxiv : the preprint server for biology
研究论文 本文介绍了VASCilia,一个基于深度学习的Napari插件,用于自动化分析耳蜗毛细胞立体纤毛束的3D共聚焦显微镜数据集 VASCilia是首个专门用于耳蜗毛细胞立体纤毛束3D分析的深度学习工具,提供了五种深度学习模型和自动化计算工具,支持高通量图像定量分析 NA 开发一个自动化工具,用于分析耳蜗毛细胞立体纤毛束的3D形态,以促进耳蜗毛细胞发育和功能的研究 耳蜗毛细胞立体纤毛束 计算机视觉 NA 深度学习 Z-Focus Tracker (ZFT), PCPAlignNet, 分割模型, 分类工具 3D共聚焦显微镜图像 55个3D图像堆栈,包含502个内毛细胞和1,703个外毛细胞束的3D注释
5344 2025-03-11
Global Deep Forecasting with Patient-Specific Pharmacokinetics
2025-Feb-12, ArXiv
PMID:37965077
研究论文 本文提出了一种新颖的混合全局-局部架构和药代动力学编码器,用于预测医疗时间序列数据,特别是在血糖预测任务中展示了其有效性 提出了一种混合全局-局部架构和药代动力学编码器,能够为深度学习模型提供患者特定的治疗效果信息 未明确提及具体局限性 提高医疗时间序列数据预测的准确性,特别是在患者特定药代动力学影响下的血糖预测 医疗时间序列数据,特别是血糖数据 机器学习 糖尿病 深度学习 混合全局-局部架构 时间序列数据 模拟数据和真实世界数据
5345 2025-03-11
Smart IoT-based snake trapping device for automated snake capture and identification
2025-Feb-10, Environmental monitoring and assessment IF:2.9Q3
研究论文 本文介绍了一种基于物联网(IoT)的智能捕蛇设备,旨在自动捕捉和识别蛇类,以减少蛇咬伤的风险 结合人工智能(AI)和物联网(IoT)技术,提出了一种非侵入性的解决方案,能够自动捕捉和识别蛇类,并通过深度学习算法实时分类蛇的毒性 设备的准确率为91.3%,仍有提升空间,且未提及设备在不同环境下的适用性 开发一种智能捕蛇设备,以减少蛇咬伤的风险并提高捕蛇的安全性和效率 蛇类,特别是热带和亚热带地区的蛇类 物联网 NA 深度学习,卷积神经网络(CNN) CNN 图像 使用蛇类图像进行训练
5346 2025-03-11
gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design
2025, Methods in molecular biology (Clifton, N.J.)
研究论文 本文介绍了一种名为gRNAde的几何深度学习管道,用于3D RNA逆向设计,该管道考虑了RNA的3D结构和动态性 gRNAde采用图神经网络和SE(3)等变编码-解码框架,首次在RNA设计中明确考虑3D几何和构象多样性 NA 开发一种能够基于RNA的3D骨架结构设计RNA序列的计算工具 RNA的3D骨架结构 机器学习 NA 几何深度学习 图神经网络 3D RNA骨架结构 来自PDB的现有RNA结构,包括核糖开关、适配体和核酶
5347 2025-03-11
The More, the Better? Evaluating the Role of EEG Preprocessing for Deep Learning Applications
2025, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究首次全面评估了EEG预处理在深度学习应用中的影响,并提出了未来研究的指导方针 首次系统性地研究了不同预处理水平对深度学习模型性能的影响,并提出了针对EEG数据预处理的建议 研究结果可能受限于所选的分类任务和EEG架构,未涵盖所有可能的预处理方法和模型类型 评估EEG预处理对深度学习应用的影响,确定最佳预处理策略 EEG数据 机器学习 帕金森病、阿尔茨海默病、睡眠剥夺、首次发作精神病 EEG数据预处理 深度学习模型 EEG数据 4800个训练模型
5348 2025-03-11
Virtual Monochromatic Imaging of Half-Iodine-Load, Contrast-Enhanced Computed Tomography with Deep Learning Image Reconstruction in Patients with Renal Insufficiency: A Clinical Pilot Study
2025, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi
研究论文 本研究探讨了在肾功能不全患者中使用深度学习图像重建(DLIR)进行半碘负荷对比增强CT(CECT)的薄层虚拟单色成像(VMI)的图像质量 结合40 keV和DLIR,为半碘负荷CECT的薄层VMI提供了最大的对比噪声比(CNR)和主观可接受的图像质量 样本量较小(28名患者),且为回顾性研究 评估半碘负荷CECT的薄层VMI图像质量 中度至重度肾功能不全的肿瘤患者 医学影像 肾功能不全 双能CT(DECT)和深度学习图像重建(DLIR) 深度学习图像重建(DLIR) CT图像 28名中度至重度肾功能不全的肿瘤患者
5349 2025-03-11
Comparison of Vendor-Pretrained and Custom-Trained Deep Learning Segmentation Models for Head-and-Neck, Breast, and Prostate Cancers
2024-Dec-18, Diagnostics (Basel, Switzerland)
研究论文 本文评估了本地患者和临床特征对商业深度学习分割模型在头颈、乳腺和前列腺癌症中性能的影响 比较了供应商预训练和自定义训练的深度学习分割模型,并展示了自定义模型在多个器官风险区域(OARs)上的显著改进 研究样本量相对较小,且仅针对头颈、乳腺和前列腺癌症 评估本地数据和临床特征对商业深度学习分割模型性能的影响 头颈、乳腺和前列腺癌症患者 数字病理 头颈癌、乳腺癌、前列腺癌 深度学习分割模型 深度学习模型 CT扫描图像 210名患者(53名头颈癌、49名左乳腺癌、55名右乳腺癌、53名前列腺癌)
5350 2025-03-11
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning
2024-Dec-09, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种基于深度学习的模型ICoN,用于从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并应用于高度动态的蛋白质构象采样 提出了一种新的深度学习模型ICoN,能够从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并生成新的合成构象,揭示了实验未观察到的原子级细节 模型的训练依赖于分子动力学模拟数据,可能受限于模拟的准确性和计算资源 研究高度动态蛋白质的构象集合,以理解其功能调控和疾病相关聚集 高度动态的蛋白质,特别是内在无序蛋白质(IDPs)和淀粉样β(Aβ42)单体 机器学习 NA 分子动力学模拟(MD) 深度学习模型(ICoN) 分子动力学模拟数据 NA
5351 2025-03-11
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning
2024-Jun-28, Research square
研究论文 本文开发了一种基于无监督深度学习的模型ICoN,用于从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并通过插值数据点快速识别具有复杂和大规模侧链和骨架排列的新合成构象 提出了ICoN模型,能够从分子动力学模拟数据中学习蛋白质构象变化的物理原理,并生成新的合成构象,揭示了实验发现中未包含的重要原子细节 方法的普适性依赖于可用训练数据的质量和数量,且需要进一步的实验验证来确认生成构象的生物学相关性 研究蛋白质构象集合,特别是高度动态蛋白质的构象变化,以理解其功能调控和疾病相关聚集 高度动态的淀粉样β(Aβ42)单体 机器学习 NA 分子动力学(MD)模拟 ICoN(Internal Coordinate Net) 分子动力学模拟数据 NA
5352 2025-03-11
A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM
2024-Feb-19, Journal of biomolecular structure & dynamics IF:2.7Q2
研究论文 本文提出了一种新的深度学习模型,用于通过视网膜眼底图像检测糖尿病视网膜病变,结合了预训练的CNN和HWBLSTM 创新点在于结合了He加权双向长短期记忆网络(HWBLSTM)和有效的迁移学习技术,用于从视网膜眼底图像中检测糖尿病视网膜病变 未明确提及研究的局限性 研究目的是开发一种深度学习方法来准确检测和分类糖尿病视网膜病变 研究对象是糖尿病视网膜病变患者的视网膜眼底图像 计算机视觉 糖尿病视网膜病变 深度学习、迁移学习、图像预处理、图像分割、特征提取、降维 CNN、HWBLSTM 图像 使用了APTOS和MESSIDOR数据集
5353 2025-03-11
Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种改进的物理信息神经网络(PINN)框架,用于解决蚊子种群动态建模中的ODE优化问题 提出了一种改进的PINN框架,解决了梯度不平衡和刚性ODE问题,并通过逐步扩展训练时间域来解决时间因果关系问题 当前PINN框架在现实世界的ODE系统中还不够成熟,尤其是在具有极端多尺度行为的系统中 改进物理信息神经网络在ODE系统中的应用,特别是用于蚊子种群动态建模 蚊子种群动态建模 机器学习 NA 物理信息神经网络(PINN) PINN 模拟数据 NA
5354 2025-03-11
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
5355 2025-03-11
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
5356 2025-03-11
Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
5357 2025-03-11
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA
5358 2025-03-11
Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study
2021-04-05, Journal of medical Internet research IF:5.8Q1
研究论文 本研究开发并应用了一种基于人工智能的方法,分析英国和美国社交媒体上关于COVID-19疫苗的公众情绪,以更好地理解公众对COVID-19疫苗的态度和担忧 利用自然语言处理和深度学习技术,对社交媒体数据进行情感分析和主题识别,以实时评估公众对COVID-19疫苗的信心和信任 研究依赖于社交媒体数据,可能无法完全代表所有公众的意见,且数据时间范围有限 分析英国和美国公众对COVID-19疫苗的态度和担忧,以指导教育和政策干预 英国和美国的社交媒体用户 自然语言处理 COVID-19 自然语言处理,深度学习 深度学习模型 文本 超过300,000条社交媒体帖子,包括英国的23,571条Facebook帖子和40,268条推文,美国的144,864条Facebook帖子和98,385条推文
5359 2025-03-11
Re: An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2020-01-01, Journal of the National Cancer Institute
NA NA NA NA NA NA NA NA NA NA NA NA
5360 2025-03-11
An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2019-09-01, Journal of the National Cancer Institute
研究论文 本研究开发了一种基于深度学习的视觉评估算法,用于自动识别宫颈癌前病变/癌症 利用深度学习技术自动评估宫颈图像,提高了宫颈癌筛查的准确性和可重复性 研究依赖于历史数据,可能无法完全反映当前技术的最新进展 开发一种自动识别宫颈癌前病变/癌症的视觉评估算法 9406名18-94岁的女性,来自哥斯达黎加瓜纳卡斯特地区 计算机视觉 宫颈癌 深度学习 深度学习算法 图像 9406名女性,年龄18-94岁
回到顶部