本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
521 | 2025-05-03 |
Massive experimental quantification allows interpretable deep learning of protein aggregation
2025-May-02, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adt5111
PMID:40305601
|
研究论文 | 通过大规模实验量化数据训练可解释的深度学习模型CANYA,用于预测蛋白质聚集 | 利用超过10万条蛋白质序列的实验量化数据训练卷积-注意力混合神经网络CANYA,显著提高了预测准确性,并通过基因组神经网络可解释性分析揭示了其决策过程 | NA | 开发能够准确预测蛋白质聚集的深度学习模型 | 蛋白质序列及其聚集特性 | 机器学习 | NA | 卷积-注意力混合神经网络 | CANYA(CNN与注意力机制混合模型) | 蛋白质序列数据 | 超过10万条蛋白质序列 |
522 | 2025-05-03 |
A multimodal and fully automated system for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer
2025-May-02, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adr1576
PMID:40305609
|
研究论文 | 开发了一种多模态集成全自动管道系统(MIFAPS),用于预测乳腺癌患者对新辅助化疗的病理完全缓解 | 整合了多模态数据(MRI、全切片图像和临床风险因素)的全自动系统,显著优于单模态模型 | 需要进一步验证系统的临床适用性和泛化能力 | 提高乳腺癌患者对新辅助化疗病理完全缓解的预测准确性 | 1004名局部晚期乳腺癌患者 | 数字病理学 | 乳腺癌 | 深度学习 | MIFAPS | 图像、临床数据 | 1004名患者 |
523 | 2025-05-03 |
A depression detection approach leveraging transfer learning with single-channel EEG
2025-May-02, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/adcfc8
PMID:40314182
|
research paper | 提出一种利用单通道脑电图(EEG)和迁移学习技术检测抑郁症的方法 | 采用单通道EEG信号和迁移学习技术,解决了多通道EEG在日常生活应用中的限制,并通过图像转换提高了模型性能 | 可用的抑郁症EEG数据有限,可能影响模型在区分抑郁症患者和健康受试者方面的效果 | 开发一种基于单通道EEG信号的抑郁症检测模型 | 抑郁症患者和健康个体的EEG信号 | machine learning | geriatric disease | EEG信号处理和迁移学习 | ResNet152V2 | EEG信号(转换为图像) | 有限数量的受试者 |
524 | 2025-05-03 |
Heuristic multi-scale feature fusion with attention-based CNN for sentiment analysis
2025-May-02, Network (Bristol, England)
DOI:10.1080/0954898X.2025.2498735
PMID:40314204
|
研究论文 | 提出了一种基于注意力机制的启发式多尺度特征融合CNN模型,用于情感分析 | 结合了多尺度特征融合和注意力机制的CNN模型,并使用改进的FORSO算法进行参数调优 | 未提及具体的数据集规模和模型计算复杂度 | 提高情感分析的准确率 | 用户生成的文本数据 | 自然语言处理 | NA | BERT, Transformers, word2vector | MFF-AACNet (基于注意力机制的CNN) | 文本 | 未提及具体数量,数据来自公开资源 |
525 | 2025-05-03 |
Evolutionary Dynamics and Functional Differences in Clinically Relevant Pen β-Lactamases from Burkholderia spp
2025-May-02, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.5c00271
PMID:40314617
|
研究论文 | 该研究通过机器学习和分子动力学模拟探讨了Burkholderia spp中四种Pen β-内酰胺酶的动态差异和功能差异 | 结合机器学习、增强采样分子动力学模拟和深度学习技术,揭示了Pen β-内酰胺酶的动态特征和活性位点局部动态 | NA | 研究Pen β-内酰胺酶的动态差异和功能差异,以应对抗菌素耐药性 | 四种Pen β-内酰胺酶(PenA、PenI、PenL和PenP) | 生物信息学 | 细菌感染 | 机器学习和分子动力学模拟 | Markov State Models (MSMs)、卷积变分自编码器(CVAE)、BindSiteS-CNN | 分子动力学模拟数据 | 四种Pen β-内酰胺酶 |
526 | 2025-05-03 |
Automatic ultrasound image alignment for diagnosis of pediatric distal forearm fractures
2025-May-02, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03361-w
PMID:40314702
|
研究论文 | 开发了一种自动对齐超声图像的方法,用于诊断儿童远端前臂骨折 | 提出了一种全自动的超声图像对齐流程,减少了X射线依赖,降低了辐射暴露和疼痛 | 数据集规模有限,未来需要增加数据量以提高诊断准确性和可靠性 | 开发一种自动对齐超声图像的方法,用于儿童远端前臂骨折的诊断 | 儿童远端前臂骨折 | 数字病理 | 骨折 | 深度学习 | 深度学习模型 | 超声图像 | 未明确提及样本数量 |
527 | 2025-05-03 |
Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study
2025-May-02, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03363-5
PMID:40314711
|
research paper | 提出了一种基于深度学习的自动颅骨植入物设计工作流程,通过直接预测缺损形状并与传统后处理步骤结合 | 将颅骨植入物设计问题视为一种特殊的形状补全任务,提出了一种结合深度神经网络和传统后处理的自动化工作流程 | 未提及具体的数据集规模或多样性限制 | 自动化颅骨植入物设计流程以减少治疗时间 | 人类颅骨缺损及修复植入物 | digital pathology | NA | deep learning | deep neural network | 3D shape data | 未明确提及具体样本数量 |
528 | 2025-05-03 |
Deep learning for automatic volumetric bowel segmentation on body CT images
2025-May-02, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11623-z
PMID:40314787
|
research paper | 开发了一种用于自动肠道分割的深度神经网络,并评估其在便秘患者中估计大肠长度的适用性 | 使用3D nnU-Net模型实现了胃肠道的高精度分割和四部分分离,性能优于现有工具TotalSegmentator | 食管的分割精度相对较低(DSC为0.807±0.173) | 开发自动肠道分割模型并评估其在便秘患者中的应用 | 便秘患者和健康检查者的腹部CT图像 | digital pathology | constipation | CT imaging | 3D nnU-Net | image | 模型开发使用了133例CT扫描(88名患者),外部测试使用了60例CT扫描(30名患者),LBL测量使用了100例CT扫描(51名患者) |
529 | 2025-05-03 |
Should end-to-end deep learning replace handcrafted radiomics?
2025-May-02, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07314-y
PMID:40314811
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
530 | 2025-05-03 |
Brain tissue biomarker impact bone age in central precocious puberty more than hormones: a quantitative synthetic magnetic resonance study
2025-May-02, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-025-01792-8
PMID:40314875
|
研究论文 | 本研究探讨了脑组织成分体积(BTCV)生物标志物对中枢性性早熟(CPP)患儿骨龄发展的影响,发现髓鞘含量(MyC)比激素更能影响骨龄发展 | 首次通过合成磁共振(SyMRI)技术量化分析脑组织成分体积与CPP患儿骨龄发展的关系,发现MyC与骨龄发展的相关性高于激素 | 研究为回顾性设计,样本量较小(84例CPP患儿和84例对照),且仅分析了三种激素 | 探究脑组织成分体积生物标志物与中枢性性早熟患儿骨龄发展的关系 | 84名中枢性性早熟患儿和84名对照儿童 | 数字病理学 | 儿科内分泌疾病 | 合成磁共振(SyMRI)、X射线骨龄评估、深度学习模型 | 深度学习模型(具体类型未明确说明) | 医学影像数据(MRI、X射线)和激素水平数据 | 168名儿童(84名CPP患儿和84名对照) |
531 | 2025-05-03 |
Omics data classification using constitutive artificial neural network optimized with single candidate optimizer
2025-May, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2348726
PMID:38736309
|
研究论文 | 提出了一种基于Zebra优化算法和构成性人工神经网络的omics数据分类方法,并通过单候选优化器优化权重参数 | 结合Zebra优化算法进行降维,并使用构成性人工神经网络分类omics数据,通过单候选优化器优化权重参数,提高了分类准确率 | 未提及具体的数据集大小或实验设置的局限性 | 提高omics数据的分类准确率 | omics数据(如基因组学、蛋白质组学和微生物组学数据) | 机器学习 | NA | Adaptive variational Bayesian filtering (AVBF), Zebra Optimization Algorithm (ZOA), Constitutive Artificial Neural Network (CANN), Single Candidate Optimizer (SCO) | CANN | omics数据 | NA |
532 | 2025-05-03 |
Enhancing Lesion Detection in Inflammatory Myelopathies: A Deep Learning-Reconstructed Double Inversion Recovery MRI Approach
2025-May-01, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8582
PMID:39542724
|
research paper | 本研究比较了深度学习重建的双反转恢复MRI与传统方法在炎症性脊髓病中的病变检测效果 | 首次评估了深度学习重建的双反转恢复MRI在炎症性脊髓病中的应用效果 | 研究样本量相对较小,且仅由三名神经放射科医师评估 | 比较不同MRI技术在炎症性脊髓病中的病变检测效果 | 炎症性脊髓病患者 | digital pathology | inflammatory myelopathies | deep learning-reconstructed double inversion recovery MRI | DL | MRI images | 149名参与者(平均年龄40.6岁,71名女性) |
533 | 2025-05-03 |
Hybrid deep learning-based skin cancer classification with RPO-SegNet for skin lesion segmentation
2025-May, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2428705
PMID:39628058
|
research paper | 提出了一种基于混合深度学习的皮肤癌分类方法,结合RPO-SegNet进行皮肤病变分割 | 提出了Recurrent Prototypical Object Segmentation Network (RPO-SegNet)用于皮肤病变分割,以及Fuzzy-based Shepard Convolutional Maxout Network (FSCMN)用于皮肤癌分类 | NA | 提高皮肤癌的准确和及时识别,以降低死亡率 | 皮肤黑色素病变 | computer vision | skin cancer | deep learning | RPO-SegNet, FSCMN, DMN, ShCNN | image | NA |
534 | 2025-05-03 |
Prognostic value of manual versus automatic methods for assessing extents of resection and residual tumor volume in glioblastoma
2025-May-01, Journal of neurosurgery
IF:3.5Q1
DOI:10.3171/2024.8.JNS24415
PMID:39823581
|
research paper | 比较手动与自动方法评估胶质母细胞瘤切除范围和残留肿瘤体积的预后价值 | 使用Raidionics开源软件和预训练深度学习模型进行自动分割,比较其与手动方法在预后评估中的效果 | 未发现全切除与近全切除(90%-99%)在预后上的显著差异 | 评估自动与手动方法在胶质母细胞瘤预后中的价值 | 成年胶质母细胞瘤患者 | digital pathology | glioblastoma | deep learning | pretrained deep learning models | image | 来自欧洲和北美12家医院的成年胶质母细胞瘤患者 |
535 | 2025-05-03 |
VGX: VGG19-Based Gradient Explainer Interpretable Architecture for Brain Tumor Detection in Microscopy Magnetic Resonance Imaging (MMRI)
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24809
PMID:39825619
|
research paper | 该研究提出了一种基于VGG19的梯度解释器可解释架构,用于显微镜磁共振成像(MMRI)中的脑肿瘤检测 | 结合了可解释AI(XAI)技术,使用梯度解释器来解释分类结果,提高了模型决策的可解释性 | 尽管准确率高,但结果的解释性仍存在疑问 | 开发一种自动化的微脑肿瘤识别方法 | 脑肿瘤 | digital pathology | brain tumor | microscopy magnetic resonance imaging (MMRI) | VGG19, XAI | image | 包含不同大小和类型的肿瘤样本,来自显微镜和MRI数据源 |
536 | 2025-05-03 |
Comparison of individualized facial growth prediction models using artificial intelligence and partial least squares based on the Mathews growth collection
2025-May-01, The Angle orthodontist
DOI:10.2319/082124-687.1
PMID:39884314
|
research paper | 本研究开发并比较了基于人工智能和偏最小二乘法的个体化面部生长预测模型 | 首次将TabNet深度神经网络应用于面部生长预测,并展示了AI模型在预测精度上优于传统PLS方法 | 样本量相对较小(33名受试者),且仅使用了Mathews生长收集库的数据 | 开发并比较不同面部生长预测模型的性能 | 面部生长变化(包括硬组织和软组织标志点) | computer vision | NA | deep learning, partial least squares | TabNet, PLS | image | 33名受试者的1257对生长前后侧位头颅X光片 |
537 | 2025-05-03 |
Harnessing omics data for drug discovery and development in ovarian aging
2025-May-01, Human reproduction update
IF:14.8Q1
DOI:10.1093/humupd/dmaf002
PMID:39977580
|
review | 该综述综合了关于卵巢衰老的多组学数据,探讨如何利用这些数据发现新的药物靶点并指导治疗策略 | 结合单细胞技术和空间转录组学等前沿组学技术,利用AI模型预测候选药物靶点,为个性化医疗和精准治疗提供新途径 | 仅限于截至2024年9月的英文文献,可能遗漏非英语研究 | 探索卵巢衰老的分子机制,发现减缓或逆转卵巢衰老的药物靶点 | 卵巢衰老相关的多组学数据(基因组、转录组、蛋白质组、代谢组、微生物组) | 生物信息学 | 卵巢衰老 | 多组学分析(基因组、转录组、蛋白质组、代谢组、微生物组)、单细胞技术、空间转录组学、GWAS、全外显子测序、PheWAS、孟德尔随机化 | AI、深度学习、机器学习 | 多组学数据 | NA |
538 | 2025-05-03 |
Deep learning-aided preparation and mechanism revaluation of waste wood lignocellulose-based flame-retardant composites
2025-May, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.141690
PMID:40043971
|
研究论文 | 本研究提出了一种利用深度学习辅助制备废木材基阻燃复合材料的方法,并重新评估了其阻燃机制 | 结合深度学习模型预测复合材料的阻燃性能,实现了废木材的高值化利用 | 未明确说明实验样本的具体数量及模型在其他类型废木材上的泛化能力 | 实现建筑行业废木材的高效回收利用,促进绿色低碳发展 | 废木材基阻燃复合材料 | 机器学习 | NA | 深度学习 | LSTM | 材料性能数据 | NA |
539 | 2025-05-03 |
Spiking-PhysFormer: Camera-based remote photoplethysmography with parallel spike-driven transformer
2025-May, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107128
PMID:39817982
|
研究论文 | 提出了一种名为Spiking-PhysFormer的混合神经网络模型,用于基于摄像头的远程光电容积描记术(rPPG),旨在降低功耗 | 首次将脉冲神经网络(SNN)引入rPPG领域,设计了并行脉冲驱动的变压器块和简化的脉冲自注意力机制,显著降低了功耗 | NA | 开发一种能效更高的深度学习方法,用于从面部视频中测量心脏活动和生理信号 | 面部视频中的脉搏波、心率和呼吸率等生理信号 | 计算机视觉 | NA | 远程光电容积描记术(rPPG) | Spiking-PhysFormer(混合神经网络,包含ANN和SNN) | 视频 | 四个数据集(PURE、UBFC-rPPG、UBFC-Phys和MMPD) |
540 | 2025-05-03 |
The Use of Maximum-Intensity Projections and Deep Learning Adds Value to the Fully Automatic Segmentation of Lesions Avid for [18F]FDG and [68Ga]Ga-PSMA in PET/CT
2025-May-01, Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IF:9.1Q1
DOI:10.2967/jnumed.124.269067
PMID:40081959
|
research paper | 本研究探讨了在[F]FDG和[Ga]Ga-PSMA PET/CT扫描中使用最大强度投影(MIP)图像结合深度学习(DL)进行全自动病灶分割的附加价值 | 结合MIP图像和深度学习技术,提出了一种改进的全自动病灶分割方法,并在[F]FDG PET/CT扫描中显示出减少假阳性病灶和改善肿瘤负荷量化的潜力 | 在[Ga]Ga-PSMA PET/CT扫描中,与标准DL方法相比未观察到显著性能提升 | 评估MIP图像在PET/CT扫描全自动病灶分割中的附加价值 | [F]FDG和[Ga]Ga-PSMA PET/CT扫描中的病灶 | digital pathology | melanoma, lymphoma, lung cancer, prostate cancer | PET/CT, deep learning | 3-dimensional U-Net | medical imaging | 489例[F]FDG PET/CT扫描(391训练/98测试)和117例外部测试集,355例[Ga]Ga-PSMA PET/CT扫描(285训练/70测试) |