深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 27738 篇文献,本页显示第 521 - 540 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
521 2025-07-05
TonguExpert: A Deep Learning-Based Algorithm Platform for Fine-Grained Extraction and Classification of Tongue Phenotypes
2025-Apr, Phenomics (Cham, Switzerland)
研究论文 介绍了一个名为TonguExpert的深度学习平台,用于舌象的精细提取和分类 提出了一个集成先进技术的深度学习框架,用于舌象分割和表型提取,并发布了最大的公开舌象数据集 现有方法难以捕捉细微细节,且缺乏大型数据集阻碍了稳健和泛化模型的开发 推进自动化舌诊,促进更广泛的临床应用 舌象图像 计算机视觉 NA 深度学习 CNN 图像 5992张舌象图像
522 2025-07-05
SGA-Driven feature selection and random forest classification for enhanced breast cancer diagnosis: A comparative study
2025-Mar-30, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合海鸥优化算法(SGA)进行特征选择和随机森林(RF)分类器进行数据分类的新方法,用于乳腺癌分类 首次将SGA应用于乳腺癌诊断中的基因选择,通过系统探索特征空间以识别最具信息量的基因子集,从而提高分类准确性并降低计算复杂度 未来需要探索其他自然启发算法和深度学习模型的集成以进一步提升性能和临床适用性 提高乳腺癌诊断的准确性和效率 乳腺癌基因数据 机器学习 乳腺癌 Seagull Optimization Algorithm (SGA), Random Forest (RF) RF, LR, SVM, KNN 基因数据 NA
523 2025-07-05
Facial identity recognition using StyleGAN3 inversion and improved tiny YOLOv7 model
2025-Mar-17, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于StyleGAN3反演和改进的tiny YOLOv7模型的面部身份识别方法 提出了一种结合StyleGAN3反演和改进的tiny YOLOv7模型的一步式解决方案,用于面部属性操作和检测,实现了在少样本和传统场景下的面部身份识别 数据集中仅包含20个独特身份和38个面部属性,可能限制了模型的泛化能力 解决计算机视觉领域中面部身份识别的挑战性问题 面部属性和身份识别 计算机视觉 NA StyleGAN3反演,深度学习 FIR-Tiny YOLOv7(改进的Tiny YOLOv7模型) 图像 11,560张图像,包含20个独特身份和38个面部属性
524 2025-07-05
Research on the performance of the SegFormer model with fusion of edge feature extraction for metal corrosion detection
2025-Mar-08, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于边缘特征并行提取的SegFormer金属腐蚀检测方法,以提高金属腐蚀边界和小腐蚀区域的分割准确性 引入了边缘特征提取模块(EEM)和特征融合模块(FFM),通过构建空间分支和渐进式特征融合,增强了模型对金属腐蚀边界和小腐蚀区域的检测能力 未提及模型在复杂环境或多类型腐蚀情况下的泛化能力 提高金属腐蚀检测的准确性和小腐蚀区域的识别能力 金属腐蚀图像 计算机视觉 NA 语义分割 SegFormer 图像 公共金属表面腐蚀图像数据集、BSData缺陷数据集和自建管道腐蚀坑图像数据集
525 2025-07-05
gRNAde: Geometric Deep Learning for 3D RNA inverse design
2025-Feb-26, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为gRNAde的几何深度学习管道,用于3D RNA逆设计,能够考虑结构和动态性 gRNAde利用多状态图神经网络和自回归解码,针对一个或多个3D骨架结构生成候选RNA序列,显著提高了原生序列恢复率 尽管在单状态固定骨架重新设计基准测试中表现优异,但在多状态设计方面的应用仍需进一步验证 开发一种能够考虑3D构象多样性的RNA序列设计方法 RNA序列和3D骨架结构 机器学习 NA 几何深度学习,图神经网络 GNN 3D结构数据 14个RNA结构(来自PDB),10个结构化RNA骨架的湿实验验证
526 2025-07-05
Advancing bioinformatics with large language models: components, applications and perspectives
2025-Jan-31, ArXiv
PMID:38259343
综述 本文全面概述了大型语言模型(LLMs)在生物信息学中的关键组成部分、应用及未来展望 探讨了LLMs在解决生物信息学问题上的潜力,特别是在基因组学、转录组学、蛋白质组学、药物发现和单细胞分析等领域的应用 NA 推动生物信息学领域的发展,探索LLMs在生物信息学中的应用潜力 大型语言模型(LLMs)及其在生物信息学中的应用 生物信息学 NA 自监督学习、半监督学习 transformer模型 未标记的输入数据 NA
527 2025-07-05
SiamTITP: Incorporating Temporal Information and Trajectory Prediction Siamese Network for Satellite Video Object Tracking
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
research paper 提出了一种名为SiamTITP的Siamese网络,用于卫星视频目标跟踪,通过整合时间信息和轨迹预测来提高跟踪性能 设计了时间信息子模块和轨迹预测子模块,动态更新模板以增强特征判别性,并利用多项式函数拟合历史结果来处理遮挡问题 未提及具体局限性 提高卫星视频目标跟踪的性能,解决现有方法在特征判别性、遮挡处理和超参数过多方面的问题 卫星视频中的目标跟踪 computer vision NA Siamese network SiamTITP video 三个大型卫星视频数据集(SatSOT、SV248S和OOTB)
528 2025-07-05
A Wavelet-Guided Deep Unfolding Network for Single Image Reflection Removal
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
research paper 提出了一种基于小波引导的深度展开网络(WDUNet),用于单图像反射去除,结合小波分解和深度展开技术提高方法的可解释性和泛化能力 首次将离散小波变换(DWT)与深度展开技术结合用于反射去除,设计了低频参数估计模块(LPEM)和高频参数估计模块(HPEM)自动学习模型超参数 未明确提及方法在极端复杂场景下的性能表现或计算效率方面的限制 解决单图像反射去除(SIRR)问题,提升复杂场景下反射与透射内容的分离效果 含有反射干扰的单幅图像 computer vision NA Discrete Wavelet Transform (DWT), deep unfolding Wavelet-guided Deep Unfolding Network (WDUNet) image 四个基准数据集(未明确样本数量)
529 2025-07-05
Data augmentation of time-series data in human movement biomechanics: A scoping review
2025, PloS one IF:2.9Q1
综述 本文对生物力学时间序列数据的数据增强技术进行了范围综述,探讨了当前技术、评估其有效性并提出了应用建议 首次系统性地综述了生物力学时间序列数据的数据增强技术,并针对该领域的特点提出了具体建议 研究中发现许多文献缺乏对增强方法的适当评估,且合成数据中缺少软组织伪影,导致与实际数据存在差异 评估生物力学时间序列数据的数据增强技术及其应用效果 生物力学时间序列数据 生物力学 NA 数据增强技术 NA 时间序列数据 21篇相关文献
530 2025-07-05
MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF)
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于MRI的早期颞叶癫痫检测方法,结合了深度学习和优化算法以提高诊断准确性 引入了混合注意力增强Transformer网络(HAETN)和模糊-AAL分割框架(FASF),结合了FPCM算法和AAL标记技术,并使用DGWO算法进行特征选择 未提及该方法在其他类型癫痫或不同MRI设备上的适用性 开发先进的深度学习技术以实现颞叶癫痫的早期准确诊断 颞叶癫痫患者 数字病理学 颞叶癫痫 MRI, 深度学习 HAETN, Transformer网络 MRI图像 Temporal Lobe Epilepsy-UNAM MRI数据集(具体样本数未提及)
531 2025-07-05
Enhancing IDS for the IoMT based on advanced features selection and deep learning methods to increase the model trustworthiness
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于高级特征选择和深度学习的IoMT入侵检测系统(IDS)模型,以提高检测性能和模型可信度 结合信息增益(IG)和递归特征消除(RFE)并行选择特征,并使用深度自动编码器(DAE)降维,最后通过深度神经网络(DNN)进行分类 未提及模型在更广泛IoMT设备或不同攻击类型上的泛化能力 提高IoMT环境中入侵检测系统的效率和可信度 IoMT网络流量数据 机器学习 NA 信息增益(IG), 递归特征消除(RFE), 深度自动编码器(DAE) 深度神经网络(DNN) 网络流量数据 WUSTL-EHMS-2020和CICIDS2017数据集
532 2025-07-05
Particle swarm optimization-based NLP methods for optimizing automatic document classification and retrieval
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于粒子群优化的自然语言处理方法PBX模型,用于优化自动文档分类和检索 结合深度学习和传统机器学习技术,利用BERT进行文本预训练,并结合ConvXGB模块进行分类,通过粒子群优化(PSO)优化超参数,显著提升性能 未来工作将集中于提升对小类别或模糊类别的性能,并扩展其实际应用范围 优化自动文档分类和检索的性能 多类任务和复杂文档的分类 自然语言处理 NA BERT, ConvXGB, 粒子群优化(PSO) PBX模型 文本 多个数据集,包括20 Newsgroups、Reuters-21578和AG News
533 2025-07-05
Global research landscape on artificial intelligence in echocardiography from 1997 to 2024: Bibliometric analysis
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 通过文献计量学方法分析1997年至2024年人工智能在超声心动图领域的全球研究趋势和热点 首次系统性地分析了AI在超声心动图领域的全球研究趋势和关键发展 仅基于Web of Science数据库,可能未涵盖所有相关研究 探索AI驱动的超声心动图研究热点,为未来研究提供数据支持和学术见解 1997-2024年间发表的605篇AI在超声心动图领域的研究文献 医学影像 心血管疾病 文献计量分析 深度学习 文献数据 605篇文献
534 2025-07-05
Optimizing deep learning models to combat amyotrophic lateral sclerosis (ALS) disease progression
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本研究探讨了深度学习模型在预测肌萎缩侧索硬化症(ALS)疾病进展中的应用,并比较了不同模型的性能 通过超参数优化显著提升了深度学习模型和XGBoost模型的预测性能,并识别了影响ALS进展的关键特征 研究依赖于公开数据集PRO-ACT,可能无法涵盖所有ALS患者的多样性 优化深度学习模型以预测ALS疾病进展并区分不同类型ALS ALS患者数据 机器学习 肌萎缩侧索硬化症 深度学习,XGBoost,LightGBM 深度学习序列模型,XGBoost,LightGBM 临床数据 PRO-ACT数据集中的ALS患者数据
535 2025-07-05
Brain age prediction model based on electroencephalogram signal and its application in children with autism spectrum disorders
2025, Frontiers in neurology IF:2.7Q3
研究论文 该研究基于脑电图信号和深度学习技术,构建了一个用于预测大脑年龄的模型,并应用于自闭症谱系障碍(ASD)儿童的脑发育评估 首次使用GRU神经网络方法构建Auto-EEG-Brain AGE预测模型,并将其应用于ASD儿童的脑发育评估 样本量相对较小,ASD患者组仅98例 开发客观的生物标志物来评估ASD患者的脑发育异常 健康儿童(659例)和ASD患者(98例) 数字病理学 自闭症谱系障碍 EEG和深度学习 GRU神经网络 脑电图信号 757例(659例健康儿童和98例ASD患者)
536 2025-07-05
Plant disease classification in the wild using vision transformers and mixture of experts
2025, Frontiers in plant science IF:4.1Q1
研究论文 提出了一种结合Vision Transformer和专家混合模型的新方法,用于在真实农业环境中进行植物病害分类 结合Vision Transformer和专家混合模型,通过动态分配专家处理不同类型输入数据,提高了模型在多样化图像条件下的性能 未提及具体的数据集规模限制或计算资源需求 提高植物病害分类模型在真实农业环境中的准确性和鲁棒性 植物病害图像 计算机视觉 植物病害 深度学习 Vision Transformer (ViT) 和 专家混合模型 图像 NA
537 2025-07-05
Advancing 1.5T MR imaging: toward achieving 3T quality through deep learning super-resolution techniques
2025, Frontiers in human neuroscience IF:2.4Q2
研究论文 本研究探讨了三种基于深度学习的超分辨率技术在提升1.5T MRI图像质量方面的效果,旨在达到与3T扫描相当的质量 提出使用Transformer Enhanced Generative Adversarial Network (TCGAN) 来显著提升1.5T MRI图像质量,为高成本3T MRI提供了一种经济有效的替代方案 研究未提及对不同神经疾病诊断效果的具体验证,也未讨论在实际临床环境中的适用性 提高1.5T MRI图像质量,使其接近3T MRI的水平 1.5T MRI图像 医学影像处理 神经系统疾病 深度学习超分辨率技术 TCGAN (Transformer Enhanced Generative Adversarial Network) MRI图像 未提及具体样本数量
538 2025-07-05
Self-Powered Multimodal Tactile Sensing Enabled by Hybrid Triboelectric and Magnetoelastic Mechanisms
2025, Cyborg and bionic systems (Washington, D.C.)
研究论文 本文介绍了一种利用摩擦电-磁弹性传感的创新方法,用于物体属性感知 结合摩擦电和磁弹性技术,实现自供电传感机制,无需外部电源即可生成传感信号,并通过深度学习算法实现高精度的物体属性识别 未提及具体局限性 提升物体属性感知技术的精度和实时性,支持机器人的智能化发展和实时触觉感知能力的增强 物体的材料特性、软度和粗糙度等多维信息 传感器技术 NA 摩擦电-磁弹性传感技术 深度学习算法 机械信息和多维物体属性数据 未提及具体样本数量
539 2025-07-05
HMA-Net: a hybrid mixer framework with multihead attention for breast ultrasound image segmentation
2025, Frontiers in artificial intelligence IF:3.0Q2
research paper 提出了一种基于深度学习的混合框架HMA-Net,用于乳腺超声图像分割,结合了ConvMixer编码器和ConvNeXT解码器以及多头注意力机制 结合ConvMixer和ConvNeXT模块,引入卷积增强的多头注意力机制,有效捕捉局部和全局上下文信息 仅在两个公开数据集上进行了验证,未在更大规模或更多样化的数据集上测试 提高乳腺超声图像分割的准确性,以辅助乳腺癌早期检测 乳腺超声图像 digital pathology breast cancer deep learning HMA-Net (结合ConvMixer和ConvNeXT) image BUSI和BrEaST两个数据集
540 2025-07-05
Regularization by neural style transfer for MRI field-transfer reconstruction with limited data
2025, Frontiers in artificial intelligence IF:3.0Q2
research paper 提出了一种名为RNST的新框架,通过结合神经风格迁移(NST)引擎和去噪器,实现在有限数据条件下的MRI场迁移重建 RNST框架无需配对训练数据,利用风格先验解决有限数据设置下的重建问题,且在风格和内容图像未精确对齐时仍保持鲁棒性 未明确提及具体的数据规模限制或计算资源需求 解决在数据有限环境下MRI场迁移重建的挑战 MRI图像 medical imaging NA 神经风格迁移(NST) deep learning-based models MRI图像 未明确提及具体样本数量
回到顶部