深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36535 篇文献,本页显示第 521 - 540 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
521 2025-12-13
Personalized phenotype encoding and prediction of pathological head development from cross-sectional images
2024-Nov, ... International Symposium on Medical Information Processing and Analysis. International SIPAIM Workshop
研究论文 本文提出了一种新颖的深度学习架构,用于仅使用横截面数据对规范和病理性头部发育进行个性化预测 首次创建了与年龄和性别无关的患者表型表示,并能够在无需纵向数据训练的情况下实现病理性发育的个性化预测 NA 预测解剖发育,以辅助儿科外科治疗的选择和规划 儿科患者的头部发育,包括规范发育和病理性发育 计算机视觉 颅骨病理 深度学习 深度学习架构 图像 NA NA 表型编码器, 生长预测器 头部表面生长预测误差, 体积误差 NA
522 2025-12-13
STDAN: Deformable Attention Network for Space-Time Video Super-Resolution
2024-Aug, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种用于时空视频超分辨率的可变形注意力网络(STDAN),通过长短期特征插值和时空可变形特征聚合模块提升视频重建质量 设计了长短期特征插值模块(LSTFI)利用双向RNN结构从更多相邻帧挖掘信息,并提出时空可变形特征聚合模块(STDFA)自适应捕获动态视频中的时空上下文 未明确说明模型在极端运动场景或计算资源受限环境下的性能表现 提升低分辨率低帧率视频的时空分辨率 视频序列 计算机视觉 NA 深度学习 RNN, 注意力网络 视频 多个数据集(未指定具体数量) PyTorch(根据GitHub仓库推断) STDAN(包含LSTFI和STDFA模块) 未明确说明,但提及超越现有方法 NA
523 2025-12-13
Deep Learning Sequence Models for Transcriptional Regulation
2024-08, Annual review of genomics and human genetics IF:7.7Q1
研究论文 本文综述了基于深度学习的序列模型在转录调控中的应用,包括预测非编码变异的功能后果 利用深度学习模型预测人类基因组中任何非编码变异的功能后果,包括罕见或未观察到的变异,并应用可解释性方法识别关键序列模式 未明确提及具体模型或实验的局限性 解码基因表达的调控代码并解释基因组变异对转录的影响 人类基因组DNA序列,包括非编码变异 自然语言处理 NA 深度学习序列模型 深度学习序列模型 DNA序列数据 NA NA NA NA NA
524 2025-12-13
Integrating Large-Scale Protein Structure Prediction into Human Genetics Research
2024-08, Annual review of genomics and human genetics IF:7.7Q1
综述 本文综述了深度学习模型在蛋白质结构和变异预测方面的最新进展,并探讨了其在人类遗传学和健康研究中的应用 强调将最先进的蛋白质信息学技术(如AlphaFold2)整合到人类遗传学研究中,以优先考虑未注释的错义变异 未具体讨论数据可用性、模型泛化能力或特定技术实施的局限性 促进蛋白质结构预测技术在人类遗传学研究中的更好整合,以注释变异对蛋白质功能的影响 人类蛋白质及其错义变异 自然语言处理 NA 深度学习,序列基结构预测 深度学习模型 蛋白质序列数据 数百万人类错义蛋白变异 NA AlphaFold2 NA NA
525 2025-12-12
Enhanced magnetic hyperthermia in graphene-magnetite nanohybrids for cancer therapy: Artificial intelligence-driven validation via Nonlinear Autoregressive with Exogenous Inputs-Long Short-Term Memory (NARX-LSTM) forecasting
2026-Mar, Biomaterials advances IF:5.5Q2
研究论文 本研究评估了石墨烯-磁铁矿纳米杂化物在不同成分和交变磁场下的加热效率,并利用NARX-LSTM混合深度学习模型预测温度演变,以优化癌症磁热疗效果 结合人工智能(NARX-LSTM模型)与纳米技术,实现磁热疗中温度演变的精确预测和个性化癌症治疗优化 高频(982 kHz)下因纳米颗粒弛豫动力学不匹配导致疗效降低,模型可能受实验数据范围限制 优化磁热疗的加热效率,推动个性化癌症治疗 石墨烯-磁铁矿纳米杂化物(GMNHs) 机器学习 癌症 磁热疗,交变磁场(AMFs) NARX-LSTM 实验数据(温度、成分、磁场参数) 不同FeO:石墨烯比例(0-100%)和交变磁场条件(163-982 kHz, 12.7-23.9 mT)下的纳米杂化物样本 NA NARX-LSTM R值(≥0.997) NA
526 2025-12-12
Advancing deep learning based knee cartilage segmentation in MRI: Innovations, challenges and applications
2026-Mar, Osteoarthritis and cartilage open
综述 本文综述了基于深度学习的膝关节软骨MRI分割的最新进展、挑战与应用 系统评估了多种深度学习架构与技术,并重点讨论了数据稀缺、域偏移和成像变异性等关键挑战的解决方案,如半监督学习、域适应、数据增强策略和基础模型 未提出新的原创模型或算法,主要基于现有文献进行综述;未涉及具体实验验证或性能比较 回顾和评估深度学习在膝关节软骨MRI分割中的最新方法、挑战及临床意义 膝关节软骨的MRI图像分割 计算机视觉 骨关节炎 MRI 深度学习模型 MRI图像 NA NA NA 分割准确性, 效率 NA
527 2025-12-12
Advancing biomaterial research with artificial intelligence
2026-Mar, Biomaterials advances IF:5.5Q2
综述 本文详细探讨了人工智能(包括机器学习和深度学习)在聚合物、金属、陶瓷和复合材料等各类生物材料研究中的应用,并讨论了AI在解决前向和逆向设计问题中的角色及其局限性 系统综述了AI在生物材料研究中的多类别应用,并引入了可解释人工智能(如SHAP和LIME)作为解决模型可解释性等挑战的新兴方案 讨论了AI在生物材料研究中的关键限制,包括模型可解释性、数据质量和过拟合问题 加速生物材料的开发与创新,提升其性能、效率和可扩展性,同时应对传统制造与表征过程中的挑战 各类生物材料,包括聚合物、金属、陶瓷和复合材料 机器学习 NA NA 机器学习, 深度学习 NA NA NA NA NA NA
528 2025-12-12
FoodABSANet: Developing an adaptive graph convolutional neural network for aspect-based sentiment analysis of food reviews with a weighted polarity score
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种名为FoodABSANet的自适应图卷积神经网络,用于食品评论的方面级情感分析,并引入了加权极性评分 开发了一种自适应图卷积神经网络,结合加权极性评分,以处理方面级情感分析中多个方面相互影响的问题 NA 改进方面级情感分析(ABSA)方法,特别是在食品评论领域,以实现更精确的消费者情感极性挖掘 食品评论 自然语言处理 NA NA 图卷积神经网络(GCN) 文本 NA NA FoodABSANet NA NA
529 2025-12-12
Construction and optimization of a LAMP-based diagnostic platform for acute hepatopancreatic necrosis disease in Penaeus vannamei
2026-Feb, Journal of invertebrate pathology IF:3.6Q1
研究论文 本研究开发并优化了一种基于环介导等温扩增(LAMP)的低成本、便携式诊断平台,用于快速检测南美白对虾的急性肝胰腺坏死病(AHPND) 平台整合了荧光检测与智能手机兼容设备,开发了基于深度学习的感染检测算法以实现自动化诊断,并筛选了适应性最佳的荧光核酸染料以提升等温扩增方法的性能 研究未明确提及平台在野外或极端环境下的稳定性测试,也未讨论与其他现有诊断方法的直接比较 开发一种快速、低成本、便携的诊断工具,用于早期检测南美白对虾的急性肝胰腺坏死病(AHPND),以控制疾病传播 南美白对虾(Penaeus vannamei)及其感染的急性肝胰腺坏死病(AHPND)病原体 数字病理学 急性肝胰腺坏死病 环介导等温扩增(LAMP)、荧光检测 深度学习算法 荧光信号、图像数据 未明确提及具体样本数量,仅说明用于虾样本检测 未明确提及 未明确提及 特异性、灵敏度、检测限(1 copies/µL) 未明确提及
530 2025-12-12
Deep learning and molecular dynamics reveal promising EZH2 inhibitors for epigenetic cancer targeting
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究结合深度生成模型与计算药物设计方法,识别新型EZH2抑制剂用于表观遗传癌症靶向治疗 整合了微调的REINVENT生成模型与结构及配体为基础的计算方法,用于发现新型EZH2抑制剂,并通过多维度验证(分子对接、动力学模拟、药代动力学预测)筛选出优于参考药物的先导化合物 研究主要基于计算模拟和预测,缺乏体外或体内实验验证化合物的实际疗效和毒性 加速EZH2抑制剂的发现,用于表观遗传癌症靶向治疗 EZH2蛋白及其潜在抑制剂化合物 机器学习 癌症 分子对接, 分子动力学模拟, QSAR建模, DFT计算 生成模型, 分类模型 分子结构数据, 化学性质数据 从ChEMBL化合物库生成并筛选,优先考虑了511个经过PAINS过滤的化合物进行基于结构的筛选,最终鉴定出4个先导化合物(161, 225, 234, 383) NA REINVENT ROC-AUC, R², Q², 结合亲和力 (kcal/mol), RMSD (Å), RMSF (Å) NA
531 2025-12-12
Research on a novel gene sequence prediction and homomorphic encryption method based on Mamba-VMD
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究提出了一种结合Mamba神经网络基因序列预测与同态加密的分析方法,用于在云环境中安全地进行基因序列预测与相似性分析 创新性地将Mamba神经网络用于基因序列预测,并结合变分模态分解(VMD)与同态加密技术,实现了在保护隐私前提下的云环境基因数据分析 仅以猴痘病毒的一个实验序列(SRX17751190/SRR21755835)为例进行验证,样本规模有限,未在不同物种或大规模数据集上测试泛化能力 开发一种能够在云环境中安全进行基因序列预测与隐私保护的分析方法 猴痘病毒基因序列(实验ID SRX17751190,测序ID SRR21755835) 生物信息学 猴痘 基因序列分析,同态加密 Mamba神经网络 基因序列数据 1个病毒基因序列(猴痘病毒SRX17751190/SRR21755835) NA Mamba神经网络,VMD(变分模态分解) MAE, MSE, RMSE, MAPE, MSPE, CKKS同态加密计算误差 云计算环境
532 2025-12-12
Constructing a deep learning-assisted smartphone application for intelligent recognition of steak doneness during cooking
2026-Feb, Meat science IF:5.7Q1
研究论文 本研究构建了一个深度学习驱动的智能手机应用,用于烹饪过程中牛排熟度的智能识别 结合深度学习模型与理化特性,构建非破坏性牛排熟度评估框架,并开发移动端优化应用实现实时识别 NA 开发智能烹饪设备,提高牛排熟度识别的准确性和实时性 牛排 计算机视觉 NA NA CNN 图像 1803张图像来自601块不同牛排,153个样本的理化特性来自51块不同牛排 NA DenseNet121 准确率 移动端边缘计算
533 2025-12-12
A two-step joint model based on deep learning realizes intelligent recognition of exfoliated cells in serous effusion
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 提出一种基于深度学习的两步联合模型,用于实现浆膜腔积液脱落细胞的智能识别 通过整合在线卷积重参数化模块改进YOLOv8模型,并结合双注意力视觉变换器,构建了两步联合框架,以标准化和增强诊断过程 未明确提及研究的具体局限性 标准化和增强浆膜腔积液的细胞学诊断过程,减少误诊和漏诊 浆膜腔积液中的脱落细胞,包括异常细胞以及正常细胞(淋巴细胞、间皮细胞、组织细胞、中性粒细胞) 数字病理学 恶性肿瘤 深度学习 YOLOv8, DaViT 图像 未明确提及具体样本数量 未明确提及 YOLOv8, DaViT 灵敏度, 准确率 未明确提及
534 2025-12-12
A unified graph-based approach for protein function prediction using AlphaFold structures and sequence features
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 提出了一种名为StructSeq2GO的新型混合模型,通过结合AlphaFold预测的蛋白质结构和序列特征来预测蛋白质功能 首次将AlphaFold预测的高精度蛋白质结构信息与ProteinBERT生成的序列嵌入相结合,利用图表示学习进行蛋白质功能预测 模型性能受AlphaFold结构预测质量影响,未来可从结构置信度建模方面改进;目前尚未扩展到通路水平或疾病相关注释预测 开发一种整合蛋白质结构和序列信息的统一方法,以提升蛋白质功能预测的准确性 蛋白质及其功能注释(基因本体GO标签) 计算生物学 NA AlphaFold结构预测,ProteinBERT语言模型,图表示学习 图神经网络,语言模型 蛋白质序列,蛋白质结构,蛋白质-蛋白质相互作用网络 NA NA StructSeq2GO(自定义混合架构) F分数,AUC,AUPR NA
535 2025-12-12
Systemic Lupus Erythematosus prediction using Epistatic-Quantile Fusion Transformer network with integrated multi-omics and clinical data
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种名为Epistatic-Quantile Fusion Transformer (EQF-T)的统一框架,用于整合多组学和临床数据以预测系统性红斑狼疮 引入了Beta-Variational Rank-ordered Quantile Autoencoder (Beta-VARQA)进行数据预处理,以及Epistatic Attention fused Multi-Omics Laplacian Transformer (EA-MLT)来捕获高阶基因-基因相互作用和跨组学层的结构依赖性 未在摘要中明确说明 开发一个深度学习框架,以有效整合高维多组学数据和电子健康记录,实现系统性红斑狼疮的早期预测 系统性红斑狼疮患者的多组学数据和临床数据 机器学习 系统性红斑狼疮 多组学数据整合,电子健康记录分析 Transformer, Autoencoder 多组学数据,临床数据 未在摘要中明确说明 未在摘要中明确说明 Beta-Variational Rank-ordered Quantile Autoencoder (Beta-VARQA), Epistatic Attention fused Multi-Omics Laplacian Transformer (EA-MLT), SLE-Net 准确率, 精确率, 召回率, F1分数, ROC-AUC 未在摘要中明确说明
536 2025-12-12
A novel hybrid deep learning model using MEResNext for autism spectrum disorder detection
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种结合MoNet和ResNeXt的混合深度学习模型MEResNeXt,用于自闭症谱系障碍的检测 提出了一种名为DeSEHO的特征选择方法(结合双指数平滑和麋鹿群优化器),并构建了新型混合深度学习模型MEResNeXt 未提及模型在独立外部数据集上的验证情况,也未讨论计算复杂度或实时应用可行性 开发一种用于自闭症谱系障碍检测的混合深度学习方法 自闭症谱系障碍患者的数据 机器学习 自闭症谱系障碍 Yeo-Jhonson变换,双指数平滑,麋鹿群优化器 深度学习,混合模型 未明确说明(可能是医学或行为数据) NA NA MEResNeXt(MoNet与ResNeXt的组合) 准确率,灵敏度,特异性 NA
537 2025-12-12
LYnet: Computational identification of tumor T cell antigens using convolutional and recurrent neural networks
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究提出了一种名为LYnet的新型深度学习模型,用于准确预测肿瘤T细胞抗原,以改进癌症疫苗的开发 构建了一个结合一维卷积神经网络和双向长短期记忆层的混合架构,以同时捕捉局部基序模式和长程序列依赖性,并采用SMOTE-Tomek策略处理类别不平衡问题 未在更广泛、更多样化的独立数据集上进行验证,模型性能可能受限于训练数据的质量和代表性 开发一种高精度的计算模型,以改进肿瘤T细胞抗原的识别,从而促进更有效的治疗性癌症疫苗的开发 肿瘤T细胞抗原的氨基酸序列 生物信息学/计算生物学 癌症 深度学习,序列特征提取(AAindex, AAK-mer, CKSAAP/CKSAAGP, 理化组成向量) CNN, LSTM 序列数据(氨基酸序列) 使用了LYnet基准数据集进行训练和10折交叉验证,并在两个独立基准集(TAP 1.0和iTTCA-RF)上进行评估 NA 一维CNN与双向LSTM的混合架构(LYnet) AUC, 灵敏度, 特异性, MCC NA
538 2025-12-12
Diagnosis of leukemia using microarray analysis based on Hidden Markov Model and Random Convolutional Kernel Transform
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究提出了一种结合生成对抗网络、隐马尔可夫模型和随机卷积核变换的深度学习模型,用于基于微阵列数据的白血病高精度诊断 首次将GAN(U-Net架构)用于生成白血病诊断相关的合成微阵列数据,并结合HMM进行特征排序与ROCKET方法进行分类,实现了对五种白血病亚型的高精度分类 未明确说明模型在独立外部验证集上的泛化性能,也未讨论计算复杂度和临床部署可行性 提高基于微阵列数据的白血病亚型诊断准确率 白血病患者的基因微阵列数据 机器学习 白血病 微阵列分析 GAN, HMM, ROCKET 基因表达数据 NA NA U-Net 准确率 NA
539 2025-12-12
Beehive-entrance imaging and deep learning for real-time monitoring of Varroa destructor in apiculture
2026-Feb, Journal of invertebrate pathology IF:3.6Q1
研究论文 本研究提出了一种基于蜂巢入口成像和深度学习的方法,用于实时监测蜜蜂中的瓦螨(Varroa destructor) 通过改造传统蜂巢并部署基于YOLOv5s的检测器,实现了在蜜蜂运动和环境光照变化下的实时瓦螨检测,并提供了经济可行的规模化部署方案 未明确提及模型在不同气候或蜂种间的泛化能力,以及长期运行中的维护挑战 开发一种实时、自动化的瓦螨监测系统,以支持可持续和数据驱动的养蜂实践 蜜蜂(Apis mellifera)及其寄生虫瓦螨(Varroa destructor) 计算机视觉 NA 蜂巢入口成像 CNN 图像, 视频 1,600张标注图像,补充了螨虫特写 NA YOLOv5s 平均精度均值(mAP@0.5) NA
540 2025-12-12
Using Deep Learning With Few-Shot Learning to Improve Data Capture in Total Hip Arthroplasty Operative Notes
2026-Jan, The Journal of arthroplasty IF:3.4Q1
研究论文 本研究评估了使用GPT-4结合少样本学习技术,从全髋关节置换术手术记录中提取植入物固定方式、技术使用和手术入路信息的可行性 首次将GPT-4与自定义少样本学习提示结合,应用于骨科手术记录的自动化数据提取,并生成临床分类的详细理由 研究为单中心试点,样本量有限(240份记录),且仅针对全髋关节置换术,未验证在其他手术或医疗场景的泛化能力 提高全髋关节置换术手术记录中关键信息的自动化提取准确性和效率,以支持大规模骨科数据登记和分析 全髋关节置换术的手术记录文本 自然语言处理 骨科疾病 少样本学习 GPT-4 文本 240份独特手术记录(来自38名外科医生,2011年11月至2024年3月) NA GPT-4 准确率, Flesch-Kincaid等级分数, 自BLEU分数, 字符级序列匹配率 NA
回到顶部