深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 25309 篇文献,本页显示第 5461 - 5480 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
5461 2025-04-17
Deep Learning: A Heuristic Three-Stage Mechanism for Grid Searches to Optimize the Future Risk Prediction of Breast Cancer Metastasis Using EHR-Based Clinical Data
2025-Mar-25, Cancers IF:4.5Q1
research paper 该研究提出了一种启发式三阶段机制,用于优化基于EHR临床数据的乳腺癌转移未来风险预测的深度学习模型网格搜索 引入了甜点网格搜索(SSGS)和随机网格搜索(RGS)策略,以及三阶段机制来管理低预算网格搜索的运行时间,显著提高了乳腺癌转移风险预测的性能 研究未提及外部验证或模型在其他数据集上的泛化能力 优化深度学习模型在乳腺癌转移风险预测中的性能 乳腺癌患者的EHR临床数据 machine learning breast cancer grid search, SHAP analysis DFNN (deep feedforward neural network) EHR-based clinical data NA
5462 2025-04-17
High resolution multi-delay arterial spin labeling with self-supervised deep learning denoising for pediatric choroid plexus perfusion MRI
2025-Mar, NeuroImage IF:4.7Q1
research paper 本研究提出了一种高分辨率多延迟动脉自旋标记(MD-ASL)协议,结合基于Transformer的自监督深度学习去噪技术,用于儿童脉络丛(CP)灌注MRI成像 首次在儿科人群中应用高分辨率MD-ASL技术,并开发了基于Transformer的深度学习模型,使用k空间加权图像平均(KWIA)去噪图像作为训练参考 研究样本仅限于21名8至17岁的正常发育儿童,未包括更广泛年龄范围或特殊人群 开发一种适用于儿童脉络丛灌注成像的高分辨率MD-ASL技术,并提高灌注参数的信噪比和可重复性 儿童脉络丛(CP)和灰质的灌注参数 医学影像处理 神经发育研究 多延迟动脉自旋标记(MD-ASL),k空间加权图像平均(KWIA) Transformer MRI图像 21名8至17岁的正常发育儿童
5463 2025-04-17
Role of Artificial Intelligence in Congenital Heart Disease and Interventions
2025-Mar, Journal of the Society for Cardiovascular Angiography & Interventions
review 本文探讨了人工智能在先天性心脏病及其干预措施中的作用,特别是在心脏成像、电生理学、介入手术和重症监护监测方面的应用 人工智能算法通过提高成像分割和处理能力以及诊断准确性,显著改善了复杂先天性心脏病的解剖诊断、心脏功能评估和长期预后预测 人工智能算法仍面临数据标准化、算法验证、漂移和可解释性等障碍 研究人工智能在先天性心脏病诊断、治疗和监护中的应用及其潜在影响 儿童和成人先天性心脏病患者 digital pathology cardiovascular disease machine learning, deep learning deep learning models image, electrocardiogram signals, intensive care data NA
5464 2025-04-17
Depression diagnosis: EEG-based cognitive biomarkers and machine learning
2025-02-26, Behavioural brain research IF:2.6Q3
综述 本文综述了抑郁症诊断中的EEG认知生物标志物及机器学习应用 探讨了EEG生物标志物在抑郁症诊断中的潜力,并整合了机器学习和深度学习模型以提高诊断准确性 未提及具体实验数据或样本量,可能缺乏实证支持 研究抑郁症诊断的新方法及其神经生理学基础 抑郁症患者及其EEG数据 机器学习 抑郁症 EEG数据分析 机器学习和深度学习模型 EEG数据 NA
5465 2025-04-17
Semantic Segmentation of TB in Chest X-rays: a New Dataset and Generalization Evaluation
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
研究论文 本文介绍了一个新的数据集TB-Portals SIFT,用于胸部X光片中结核病(TB)病灶的语义分割,并评估了多种语义分割模型的性能 提出了一个新的TB病灶语义分割数据集,并比较了基于分割的方法与传统分类方法在泛化性能上的差异 数据集中的病灶实例使用的是伪标签,可能影响模型性能 开发能够解释决策过程的TB自动诊断系统 胸部X光片中的TB病灶 计算机视觉 结核病 深度学习 UNet, YOLOv8-seg, DenseNet121 图像 6,328张胸部X光片,包含10,435个伪标签病灶实例
5466 2025-04-17
Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors
2025-01-13, Journal of chemical information and modeling IF:5.6Q1
research paper 该论文介绍了一种名为Multiview-ATPBind的深度学习模型和ResiBoost算法,用于准确预测ATP结合位点,并应用于激酶抑制剂的药物发现 提出了Multiview-ATPBind模型,整合1D序列和3D结构信息进行快速精确的残基水平口袋-配体相互作用预测,以及ResiBoost算法用于缓解数据不平衡问题 未提及具体局限性 提高ATP结合位点的预测准确性,并应用于激酶抑制剂的药物发现 ATP结合位点及激酶抑制剂(如伊马替尼和达沙替尼) machine learning cancer deep learning Multiview-ATPBind, ResiBoost 1D序列数据, 3D结构数据 NA
5467 2025-04-17
MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials
2025-01-13, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文提出了一种名为MGT的机器学习方法,用于加速合金催化材料在氢析出反应中的性能预测 引入了掩码图Transformer网络(MGT)和非线性消息传递机制,增强模型对催化反应中关键位点的识别能力 当前深度学习方法未充分关注活性原子和吸附物的重要性,而更侧重于催化材料的整体结构 提高合金催化材料在氢析出反应中吸附能预测的准确性 合金催化材料 机器学习 NA 深度学习 Transformer, MPNN 分子图数据 小数据集OC20-Ni
5468 2025-04-17
Deep Learning-Driven Insights into Enzyme-Substrate Interaction Discovery
2025-01-13, Journal of chemical information and modeling IF:5.6Q1
研究论文 介绍了一种名为MEI的新型机器学习框架,用于高精度预测分子是否为特定酶的底物 MEI模型通过先进的注意力机制在分层神经网络中结合原子环境数据和氨基酸序列特征,显著提高了预测准确性 虽然模型表现出色,但对于某些特定酶或分子的预测可能仍需进一步验证 开发高精度的计算模型来预测分子与酶之间的相互作用 酶与分子之间的相互作用 机器学习 NA 机器学习 分层神经网络 酶反应数据和酶序列数据 包含广泛酶反应和酶序列信息的综合数据集
5469 2025-04-17
Evaluations of the Perturbation Resistance of the Deep-Learning-Based Ligand Conformation Optimization Algorithm
2025-01-13, Journal of chemical information and modeling IF:5.6Q1
研究论文 评估基于深度学习的配体构象优化算法(DeepRMSD+Vina)在输入扰动下的鲁棒性 与传统优化算法(如Prime MM-GBSA和Vina优化)相比,DeepRMSD+Vina在处理不同蛋白-配体案例时表现出更高的性能,并且在输入结构存在扰动(高达3 Å)时仍能生成正确的结合结构 对于大扰动(RMSD在3-4 Å之间),成功率显著下降至11% 评估基于深度学习的配体构象优化算法的鲁棒性 蛋白-配体结合构象 机器学习 NA 深度学习 DeepRMSD+Vina 蛋白-配体结合构象数据 NA
5470 2025-04-17
Robust soybean seed yield estimation using high-throughput ground robot videos
2025, Frontiers in plant science IF:4.1Q1
research paper 提出了一种利用计算机视觉和深度学习技术从地面机器人视频中高效估算大豆种子产量的新方法 结合了鱼眼图像校正和随机传感器效应的数据增强技术,提高了种子计数和产量估算的准确性和泛化能力 仅基于两年的测试数据(2021年的8,500个地块和2023年的650个地块),可能需要更多年份和更大范围的数据验证 开发一种高效、低成本的大豆种子产量估算方法,以替代传统劳动密集型且成本高的方法 大豆种子产量估算 computer vision NA computer vision, deep learning P2PNet-Yield image, video 2021年8,500个地块和2023年650个地块的数据
5471 2025-04-17
A weakly supervised deep learning framework for automated PD-L1 expression analysis in lung cancer
2025, Frontiers in immunology IF:5.7Q1
research paper 开发了一种基于弱监督深度学习的框架MiLT,用于自动分析肺癌中的PD-L1表达 创新性地开发了多实例学习工具MiLT,显著减少了对劳动密集型细胞级注释的需求,同时保持高准确性 需要在前瞻性临床试验中进一步探索 开发可靠的方法来识别可能对免疫检查点抑制剂治疗有反应的肺癌患者群体 肺癌患者 digital pathology lung cancer multiple instance learning (MIL) deep learning whole slide images 内部和外部队列
5472 2025-04-17
Unlocking chickpea flour potential: AI-powered prediction for quality assessment and compositional characterisation
2025, Current research in food science IF:6.2Q1
研究论文 本研究探讨了深度学习模型与近红外光谱技术相结合,以提高鹰嘴豆粉质量评估的准确性和效率 首次将CNN、ViT和GCN等深度学习模型应用于鹰嘴豆粉质量评估,并与传统PLSR方法进行比较 数据集有限,可能影响模型的泛化能力 提高鹰嘴豆粉质量评估的准确性和效率 136种不同品种的鹰嘴豆粉 机器学习 NA 近红外光谱技术 CNN, ViT, GCN 光谱数据 136种鹰嘴豆品种
5473 2025-04-17
Deep learning enabled integration of tumor microenvironment microbial profiles and host gene expressions for interpretable survival subtyping in diverse types of cancers
2024-Dec-17, mSystems IF:5.0Q1
research paper 该研究开发了一种名为ASD-cancer的半监督深度学习框架,用于从肿瘤微生物组和转录组数据中提取与生存相关的特征,并识别患者的生存亚型 提出了ASD-cancer框架,能够整合肿瘤微生物组和宿主基因表达数据,进行可解释的生存亚型分析,相比传统方法如PCA,提供了更好的风险分层 研究依赖于TCGA数据库的样本,可能无法涵盖所有肿瘤类型的多样性 解码肿瘤微生物组与宿主基因表达之间的复杂关系,及其对患者生存的联合影响 20种不同类型癌症的组织样本 digital pathology cancer deep learning, autoencoder autoencoder microbiome and transcriptome data 来自TCGA数据库的多种癌症类型的组织样本
5474 2025-04-17
Binding and sensing diverse small molecules using shape-complementary pseudocycles
2024-07-19, Science (New York, N.Y.)
research paper 本文提出了一种设计高亲和力小分子结合蛋白的方法,并应用于下游传感 利用深度学习生成的具有不同形状中央结合口袋的假环结构,结合小分子以实现高亲和力结合,并构建化学诱导二聚化系统和低噪声纳米孔传感器 NA 设计高亲和力小分子结合蛋白并用于传感应用 小分子(如甲氨蝶呤和甲状腺素) machine learning NA deep learning, docking NA molecular structure 四种不同小分子
5475 2025-04-17
Medical forecasting
2024-05-24, Science (New York, N.Y.)
研究论文 本文讨论了AI在天气预报中的应用及其在医学预测中的潜力 提出将天气预报中的深度学习模型GraphCast应用于医学预测,以提高预测准确性和速度 目前医学预测领域缺乏黄金标准,预测健康结果的方法尚不成熟 探索AI在医学预测中的应用,以预防疾病或严重急性事件 个体健康风险预测 机器学习 NA 深度学习 GraphCast NA NA
5476 2025-04-17
Whole-body magnetic resonance imaging at 0.05 Tesla
2024-05-10, Science (New York, N.Y.)
research paper 开发了一种使用0.05特斯拉永磁体和深度学习的全身MRI扫描仪,无需射频和磁屏蔽 利用深度学习和0.05特斯拉永磁体开发了一种低成本、无需屏蔽的全身MRI扫描仪,并采用三维深度学习重建提升图像质量 未提及具体样本量和临床验证结果 开发低成本、易普及的全身MRI扫描技术 全身MRI扫描仪 医学影像 NA MRI, 深度学习 深度学习 MRI图像 NA
5477 2025-04-17
Sequence basis of transcription initiation in the human genome
2024-04-26, Science (New York, N.Y.)
研究论文 该研究通过深度学习模型Puffin预测人类基因组中转录起始的序列模式,揭示了大多数人类启动子的转录起始规则 使用可解释的深度学习模型Puffin,在碱基对分辨率上预测转录起始,并识别出关键序列模式及其在启动子活性中的作用 研究可能未涵盖所有转录起始的复杂调控机制,且模型解释性可能有限 理解人类基因组中转录起始的序列基础和规则 人类基因组中的转录起始位点和启动子 基因组学 NA 深度学习 Puffin 基因组序列数据 NA
5478 2025-04-17
Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study
2024-02, The Journal of arthroplasty IF:3.4Q1
研究论文 本研究开发并验证了一种基于深度学习的自动化分类系统,用于股骨头坏死(ONFH)的分类 采用深度学习中的卷积神经网络(CNN)模型对ONFH进行分类,并在多中心数据集上验证了其高准确性和泛化能力 研究仅使用了来自4家机构的回顾性数据,可能需要更多前瞻性数据进一步验证模型的普适性 开发高准确性的ONFH自动分类系统以辅助临床决策 股骨头坏死(ONFH)患者 数字病理学 骨科疾病 MRI成像 CNN 图像 1,806张MRI图像(来自1,337个髋关节),其中外部验证集包含334张图像(来自182个髋关节)
5479 2025-04-17
Multiple-instance learning of somatic mutations for the classification of tumour type and the prediction of microsatellite status
2024-01, Nature biomedical engineering IF:26.8Q1
研究论文 本文提出了一种弱监督端到端多实例学习模型,用于编码和聚合体细胞突变的局部序列上下文或基因组位置,以进行样本级分类 使用多注意力头的多实例学习模型,能够建模个体测量对样本级分类的重要性,提供更强的可解释性,并在合成任务和实际任务中表现优异 NA 改进基因组数据集的聚合信息任务性能,以生成生物学见解 体细胞突变数据 机器学习 肿瘤 多实例学习 多注意力头模型 基因组数据 NA
5480 2025-04-17
De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles
2023-Dec-21, bioRxiv : the preprint server for biology
研究论文 提出了一种结合深度学习和能量基础的通用方法,用于设计能够高亲和力结合并感知任意小分子的蛋白质 首次采用深度学习生成具有中央口袋的假环结构,能够针对不同大小和形状的小分子设计高形状互补性的结合口袋,并成功应用于极性柔性分子如甲氨蝶呤和甲状腺素 未提及该方法在更复杂生物环境中的适用性或对其他类型分子的普适性 开发一种通用方法设计能够结合并感知任意小分子的蛋白质 小分子(包括甲氨蝶呤、甲状腺素等极性柔性分子) 机器学习 NA 深度学习 NA 分子结构数据 四种不同分子(包括甲氨蝶呤和甲状腺素)
回到顶部