本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
541 | 2025-09-07 |
Deep learning for fast super-resolution ultrasound microvessel imaging
2023-Dec-12, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0a5a
PMID:37934040
|
研究论文 | 提出一种基于深度学习的超快速超分辨率超声微血管成像方法,通过自适应匹配网络(AM-Net)和多映射数据集生成技术提升成像性能 | 引入自适应匹配网络(AM-Net)架构和多映射(MMP)数据集生成方法,显著提高定位精度并降低计算复杂度 | 深度学习性能高度依赖训练数据集,而真实数据模拟存在困难 | 提升超声定位显微镜(ULM)的成像速度和精度,克服传统方法处理时间长和微泡密度敏感性问题 | 超声微血管成像中的微泡(MBs)定位与重建 | 医学影像分析 | NA | 超声定位显微镜(ULM),深度学习 | 自适应匹配网络(AM-Net) | 超声图像 | 仿真实验使用128×128像素图像,体外实验使用896×1280像素图像 |
542 | 2025-09-07 |
Mitigating misalignment in MRI-to-CT synthesis for improved synthetic CT generation: an iterative refinement and knowledge distillation approach
2023-Dec-12, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0ddc
PMID:37976548
|
研究论文 | 提出一种新颖的两阶段方法,通过迭代精配和知识蒸馏来减轻MRI到CT合成中的错位问题,提升合成CT质量 | 首次系统性地解决MRI与CT之间的错位问题,结合迭代精配和知识蒸馏技术,显著减少GAN幻觉现象 | 研究仅基于48例头颈癌患者数据,样本量相对有限,需要更大规模验证 | 改进MRI到CT的合成技术,提高合成CT的准确性和临床适用性 | 头颈癌患者的MRI和CT图像数据 | 医学影像分析 | 头颈癌 | 生成对抗网络(GAN)、知识蒸馏、图像配准 | 条件GAN | 医学影像(MRI和CT图像) | 48例头颈癌患者 |
543 | 2025-09-07 |
Learnable PM diffusion coefficients and reformative coordinate attention network for low dose CT denoising
2023-Dec-11, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/aced33
PMID:37536336
|
研究论文 | 提出一种基于可学习PM扩散系数和改进坐标注意力网络的低剂量CT去噪方法,旨在平衡噪声抑制与结构保留 | 将Perona-Malik模型的各向异性图像处理思想融入神经网络,并设计多尺度改进坐标注意力模块增强空间位置信息捕获 | NA | 解决低剂量CT图像去噪中噪声抑制与边缘结构保留的平衡问题 | 低剂量CT图像 | 计算机视觉 | NA | 深度学习 | encoder-decoder结构网络(PMA-Net) | CT图像 | 模拟和真实数据集 |
544 | 2025-09-07 |
Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation
2023-Dec-11, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0eb2
PMID:37988756
|
研究论文 | 提出一种基于不确定性的CNN与Transformer交叉学习半监督方法,用于蜂窝肺病灶分割 | 结合CNN和Transformer进行交叉学习,利用认知不确定性指导高置信度区域学习,减少伪标签错误影响 | NA | 提高有限标注条件下的医学图像分割性能 | 蜂窝肺CT图像 | 计算机视觉 | 肺病 | 半监督学习 | CNN, Transformer | 医学图像 | 有限标注样本加大量未标注图像 |
545 | 2025-09-07 |
Volumetric feature points integration with bio-structure-informed guidance for deformable multi-modal CT image registration
2023-Dec-08, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad03d2
PMID:37844603
|
研究论文 | 提出一种基于体积特征点整合与生物结构引导的可变形多模态CT图像配准方法 | 融合体素特征点和生物结构特征点共同指导训练过程,提升低对比度器官的配准精度 | NA | 解决医学图像配准中的局部最优问题并提高配准精度 | CT-CBCT多模态医学图像 | 医学图像处理 | NA | 深度学习配准方法 | 深度学习网络 | CT和CBCT医学图像 | 配对的CT-CBCT数据集 |
546 | 2025-09-07 |
Semi-supervised contrast learning-based segmentation of choroidal vessel in optical coherence tomography images
2023-Dec-08, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0d42
PMID:37972415
|
研究论文 | 提出一种基于半监督对比学习的脉络膜血管分割方法,用于OCT图像分析 | 采用非对称师生模型框架,结合不确定性感知自集成和变换一致性技术,并设计了边界修复模块 | NA | 实现OCT图像中脉络膜血管的精确分割,辅助眼科疾病定量分析和治疗计划制定 | 脉络膜血管 | 计算机视觉 | 眼科疾病 | 光学相干断层扫描(OCT) | Pyramid Pooling SegFormer (APP-SFR), U-Net | 图像 | 三个数据集共1000张图像(ChorVessel 400张,MG 400张,U2OS 200张) |
547 | 2025-09-07 |
Axial super-resolution optical coherence tomography via complex-valued network
2023-Dec-01, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0997
PMID:37922558
|
研究论文 | 提出一种基于复数网络的轴向超分辨率光学相干层析成像方法 | 首次将复数网络应用于OCT超分辨率成像,充分利用OCT信号的幅度和相位信息 | NA | 提高光学相干层析成像的轴向分辨率 | 生物组织 | 计算机视觉 | NA | 光学相干层析成像 | 复数网络(CVSR-Net) | 图像 | 三个OCT数据集 |
548 | 2025-09-07 |
Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer
2023-Dec-01, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0d46
PMID:37972413
|
研究论文 | 提出基于无监督聚类评估的特征选择方法,结合CNN特征与影像组学特征预测局部晚期直肠癌新辅助放化疗响应 | 设计可切换3D/2D卷积核的CNN特征提取器,并创新使用无监督聚类指标替代传统分类器训练流程以降低特征选择计算成本 | 样本量较小(仅43例患者),需更大规模数据验证 | 提高局部晚期直肠癌新辅助放化疗响应预测的准确性 | 局部晚期直肠癌(LARC)患者 | 计算机视觉 | 直肠癌 | 多模态MR序列成像 | CNN(卷积神经网络) | 医学影像(ADC和T2加权图像) | 43例接受新辅助放化疗的LARC患者 |
549 | 2025-09-07 |
Deep learning-based multi-stage postoperative type-b aortic dissection segmentation using global-local fusion learning
2023-Nov-29, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfec7
PMID:37774717
|
研究论文 | 提出基于深度学习的术后B型主动脉夹层多阶段分割框架,通过全局-局部融合学习提升分割精度 | 设计两阶段分割流程和全局-局部融合学习机制,首次实现术后主动脉夹层多结构(真腔、假腔、血栓、分支血管)的精准分割 | 研究基于306张随访图像,虽为多中心数据,但样本量仍相对有限 | 开发快速准确的术后B型主动脉夹层分割方法,支持患者特异性三维形态学和血流动力学分析 | B型主动脉夹层患者术后CT影像 | 计算机视觉 | 心血管疾病 | 深度学习分割 | CNN(未明确指定具体网络) | 医学影像(CT增强扫描) | 133名患者的306张随访影像 |
550 | 2025-09-07 |
Radiation-induced acoustic signal denoising using a supervised deep learning framework for imaging and therapy monitoring
2023-Nov-29, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0283
PMID:37820684
|
研究论文 | 提出一种基于深度学习的通用降噪框架GDI-CNN,用于显著提升辐射诱导声学成像的信噪比并减少所需帧数 | 开发了具有多扩张卷积的初始块结构神经网络,能处理不同时间特征的声信号,适用于多种辐射源 | NA | 解决辐射诱导声学成像中低信噪比问题,实现低剂量成像和实时治疗监测 | X射线诱导声信号、质子声信号和电声信号 | 医学影像处理 | NA | 深度学习信号降噪 | CNN(卷积神经网络) | 声学信号 | 实验数据涵盖三种不同类型的辐射诱导声信号 |
551 | 2025-09-07 |
Self-supervised enhanced thyroid nodule detection in ultrasound examination video sequences with multi-perspective evaluation
2023-Nov-28, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad092a
PMID:37918343
|
研究论文 | 提出基于视频的深度学习模型AFP和自监督模型PASS,用于超声视频序列中甲状腺结节的实时精准检测 | 将甲状腺结节检测从图像扩展到视频,利用时序上下文信息;提出相邻帧感知(AFP)和无需标注的自监督增强方法(PASS) | 未明确讨论模型在不同超声设备或操作者间的泛化能力 | 提升超声视频中甲状腺结节检测的准确性和实时性 | 甲状腺结节 | 计算机视觉 | 甲状腺疾病 | 深度学习,自监督学习 | CNN(基于视频的深度学习模型) | 超声视频序列 | 92个视频(23,773帧),其中60个标注视频(16,694帧)用于训练评估 |
552 | 2025-09-07 |
Atypical architectural distortion detection in digital breast tomosynthesis: a multi-view computer-aided detection model with ipsilateral learning
2023-Nov-24, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad092b
PMID:37918341
|
研究论文 | 提出一种基于同侧解剖结构学习的多视角计算机辅助检测模型,用于数字乳腺断层合成成像中非典型结构扭曲的检测 | 利用同侧视角间的解剖结构对应关系,通过连体网络架构和三重模块融合多视角信息,显著提升非典型结构扭曲的检测性能 | NA | 开发用于乳腺结构扭曲检测的计算机辅助检测模型 | 数字乳腺断层合成成像中的非典型结构扭曲 | 计算机视觉 | 乳腺癌 | 数字乳腺断层合成成像 | Siamese network, triplet module | 医学图像 | NA |
553 | 2025-09-07 |
Deep learning based MLC aperture and monitor unit prediction as a warm start for breast VMAT optimisation
2023-Nov-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad07f6
PMID:37903442
|
研究论文 | 提出一种基于深度学习的直接预测乳腺VMAT治疗中MLC孔径和监测单元的方法,作为优化器的初始化 | 直接从患者解剖结构预测MLC孔径和监测单元,而非传统的两阶段优化流程 | 研究仅针对右侧乳腺癌患者,样本量有限(148例) | 开发自动化放射治疗计划优化方法 | 乳腺癌患者的放射治疗计划 | 医学影像分析 | 乳腺癌 | 深度学习,卷积神经网络 | U-net CNN | CT影像和轮廓投影 | 148例右侧乳腺癌患者(训练101例,验证23例,测试24例) |
554 | 2025-09-07 |
Deep learning-based workflow for hip joint morphometric parameter measurement from CT images
2023-Nov-06, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad04aa
PMID:37852280
|
研究论文 | 提出一种基于深度学习的CT图像髋关节形态参数自动测量工作流,用于提升关节置换术前规划的精度 | 首次结合由粗到精的深度学习模型与鲁棒测量方法,实现全自动髋关节形态参数量化,并对分割误差具有鲁棒性 | NA | 开发高精度自动测量髋关节形态参数的方法,以支持关节置换术前规划 | 髋关节CT图像及三维骨骼模型 | 计算机视觉 | 骨科疾病 | CT成像,深度学习 | CNN(由粗到精结构) | CT图像 | 两个不同成像协议的数据集(具体数量未明确说明) |
555 | 2025-09-07 |
Generalisation of radiotherapy dose calculation for Monte Carlo algorithm combined with 3D Swin-Unet: a multi-institutional IMRT evaluation
2023-Oct-31, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad02d8
PMID:37827160
|
研究论文 | 提出并评估了一种基于深度学习(T-MC net)的通用放疗剂量计算框架,在多个机构的IMRT计划中验证其泛化性能 | 结合3D Swin-Unet与蒙特卡洛算法,首次在多机构多身体区域进行深度学习剂量计算方法的泛化性临床评估 | 研究仅基于60个IMRT计划,样本量相对有限,且未涉及更多放疗技术类型 | 开发并验证深度学习剂量计算算法在临床放疗中的准确性和泛化能力 | 强度调制放疗(IMRT)计划,涵盖头颈、胸腹和盆腔等多个身体区域 | 医学影像分析 | 肿瘤放疗 | 蒙特卡洛算法,深度学习剂量计算 | 3D Swin-Unet | 放疗剂量分布数据 | 来自4个机构的60个IMRT计划 |
556 | 2025-09-07 |
Coarse-to-fine prior-guided attention network for multi-structure segmentation on dental panoramic radiographs
2023-Oct-26, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad0218
PMID:37816372
|
研究论文 | 提出一种基于深度学习的粗到细先验引导注意力网络,用于牙科全景X光片中的多结构分割 | 采用两阶段粗到细分割框架,结合先验引导的边缘融合模块、空间注意力模块和混合注意力模块提升分割精度 | NA | 实现牙科全景X光片中上颌窦、下颌髁、下颌神经、牙槽骨和牙齿的精确自动分割 | 牙科全景X光片中的解剖结构 | 计算机视觉 | 牙科疾病 | 深度学习 | 编码器-解码器架构的注意力网络 | X光图像 | 150张临床采集的全景X光片 |
557 | 2025-09-07 |
Super-resolution biomedical imaging via reference-free statistical implicit neural representation
2023-Oct-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfdf1
PMID:37757838
|
研究论文 | 提出一种无需参考图像的统计隐式神经表示框架,用于生物医学图像的超分辨率重建 | 采用无监督深度学习方法,仅需单张或少量低分辨率图像即可实现任意尺度的超分辨率成像 | 仅使用了有限数量的低分辨率图像进行验证 | 解决生物医学图像超分辨率重建中缺乏高分辨率参考图像的问题 | 生物医学图像(包括CT、MRI、荧光显微镜和超声图像) | 计算机视觉 | NA | 统计隐式神经表示(INR),最大似然估计 | 基于坐标的多层感知机(MLP) | 图像 | 每个超分辨率任务使用有限数量的低分辨率图像(具体数量未说明) |
558 | 2025-09-07 |
Automatic ultrasound diagnosis of thyroid nodules: a combination of deep learning and KWAK TI-RADS
2023-Oct-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfdf0
PMID:37757848
|
研究论文 | 本研究结合深度学习与KWAK TI-RADS指南,开发了一种甲状腺结节超声自动风险分级系统 | 首次实现基于KWAK TI-RADS临床指南的自动风险分级,并采用多任务CNN同时输出良恶性分类和四种恶性特征识别 | NA | 实现甲状腺结节的自动风险水平评估,为判断是否需要细针穿刺提供依据 | 甲状腺结节超声图像 | 计算机视觉 | 甲状腺疾病 | 超声检查 | U-Net++, 多任务卷积神经网络(MT-CNN) | 图像 | 1862例甲状腺结节病例(含302例测试集) |
559 | 2025-09-07 |
Sub-second whole brain T2mapping via multiband SENSE multiple overlapping-echo detachment imaging and deep learning
2023-Oct-05, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acfb71
PMID:37726009
|
研究论文 | 提出结合多波段SENSE技术和深度学习实现亚秒级全脑T2定量成像的新方法 | 首次将多波段SENSE技术与MOLED成像结合,实现600毫秒内完成全脑T2定量成像 | 高多波段因子可能导致图像质量下降,需通过PnP算法进行补偿 | 加速定量磁共振成像,实现高时间分辨率的全脑参数映射 | 人脑组织(通过数值模拟、水模实验和人体实验验证) | 医学影像分析 | NA | 多波段SENSE MOLED成像,深度学习重建 | U-Net, DRUNet | 磁共振成像数据 | 数值模拟、水模实验和人体脑部实验(具体样本数量未明确说明) |
560 | 2025-09-07 |
Automatic brain extraction for rat magnetic resonance imaging data using U2-Net
2023-Oct-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/acf641
PMID:37659398
|
研究论文 | 本研究开发了一种基于U-Net深度学习模型的大鼠脑部MRI图像颅骨剥离新方法 | 首次将U-Net神经网络应用于大鼠脑部MRI的自动颅骨剥离,相比传统软件RATS和BrainSuite表现出更优性能 | 研究仅基于599只大鼠数据,未提及模型在其他物种或成像协议下的泛化能力 | 开发大鼠脑部磁共振图像的自动颅骨剥离方法 | 599只大鼠的脑部MRI图像 | 医学图像分析 | NA | 磁共振成像(MRI) | U-Net | 医学图像 | 599只大鼠(476只训练,123只测试) |