本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5621 | 2025-06-24 |
Enhancing marine oil spill detection through dynamic adaptive knowledge distillation with spectral mask superpixel
2025-Jun-21, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2025.118270
PMID:40544526
|
research paper | 提出一种动态自适应知识蒸馏方法(DAKD-SMS),用于从无标签数据中提取空间-光谱特征,以增强海洋溢油检测 | 结合3D数据转换、动态ViT网络、光谱指数掩膜超像素生成和尺度自适应知识蒸馏,自动提取无标签数据的特征并优化模型 | 依赖于光谱指数掩膜的质量,且未提及模型在复杂海洋环境中的泛化能力 | 解决标记样本稀缺问题,提升海洋溢油检测的准确性 | 海洋溢油区域 | computer vision | NA | hyperspectral imaging (HSI), knowledge distillation | dynamic vision transformer (ViT) | hyperspectral images (HSI) | 三个数据集(具体数量未明确说明) |
5622 | 2025-06-23 |
Multistage pig identification using a sequential ear tag detection pipeline
2025-Jun-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-05283-8
PMID:40542014
|
研究论文 | 本文提出了一种基于序列耳标检测管道的猪只识别方法,用于畜牧业中的个体识别 | 提出了一种光照不变的猪只识别方法,通过四个连续的目标检测模型实现高效识别,并公开了三个自定义数据集 | 在陌生环境下的识别性能略有下降,且依赖于商业耳标的使用 | 提高畜牧业中猪只个体识别的准确性和鲁棒性 | 猪只及其耳标 | 计算机视觉 | NA | 深度学习 | 目标检测模型 | 图像 | 在两个不同的摄像头环境中评估,具体样本数量未提及 |
5623 | 2025-06-24 |
Facilitating laboratory automation using a robot with a simple and inexpensive camera detection system
2025-Jun-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-05670-1
PMID:40542052
|
研究论文 | 开发了一种基于机器人手臂的摄像头检测系统,旨在简化实验室自动化 | 利用低成本硬件和开源软件,结合ArUco标记和深度学习神经网络,实现了高效的实验室自动化 | 系统可能对特定实验室环境的适应性有限,且需要一定的技术知识进行设置和维护 | 解决小型研究实验室在采用实验室自动化技术时面临的资源和技术挑战 | 实验室自动化设备,特别是机器人手臂和摄像头检测系统 | 实验室自动化 | NA | ArUco标记,OpenCV,深度学习神经网络 | 深度学习神经网络 | 图像 | NA |
5624 | 2025-06-24 |
Few shot learning for phenotype-driven diagnosis of patients with rare genetic diseases
2025-Jun-20, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01749-1
PMID:40542121
|
research paper | 该论文提出了一种名为SHEPHERD的小样本学习方法,用于多方面的罕见疾病诊断 | SHEPHERD是一种基于知识图谱的小样本学习方法,能够在罕见疾病诊断中实现因果基因发现、检索类似患者以及表征新疾病表现 | 该方法依赖于模拟罕见疾病患者的数据集进行训练,可能在实际应用中存在泛化性问题 | 加速罕见疾病的诊断过程 | 罕见疾病患者 | machine learning | rare genetic diseases | few-shot learning | knowledge-grounded deep learning | knowledge graph enriched with rare disease information | Undiagnosed Diseases Network (N=465), MyGene2 (N=146), Deciphering Developmental Disorders study (N=1431) |
5625 | 2025-06-24 |
Quantum-classical deep learning hybrid architecture with graphene-printed low-cost capacitive sensor for essential tremor detection
2025-Jun-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-06359-1
PMID:40542145
|
研究论文 | 本研究提出了一种结合电容传感器、量子启发算法和深度学习的硬件和软件架构,用于检测原发性震颤 | 将量子启发的计算滤波器(Quantvolution和QuantClass)集成到深度学习框架中,改进了震颤模式的分析能力 | 初步结果表明损失变异性更稳定,但需要在更广泛的数据集和临床环境中进一步验证 | 开发一种用于检测原发性震颤的新型混合架构 | 原发性震颤患者的手指震颤运动 | 机器学习 | 原发性震颤 | 量子启发算法、深度学习 | 深度学习框架 | 传感器数据 | NA |
5626 | 2025-06-24 |
A comprehensive review of heart rate measurement using remote photoplethysmography and deep learning
2025-Jun-20, Biomedical engineering online
IF:2.9Q3
DOI:10.1186/s12938-025-01405-5
PMID:40542336
|
review | 本文全面回顾了使用远程光电容积描记术(rPPG)和深度学习进行心率测量的研究进展 | 比较分析了深度学习与传统方法在非接触式心率估计中的准确性,并识别了现有研究中的空白和未来研究方向 | 面临运动伪影和对不同光照条件敏感等挑战 | 探讨远程健康监测系统中使用rPPG和深度学习进行心率测量的方法和进展 | 远程光电容积描记术(rPPG)和深度学习算法 | machine learning | 心血管疾病 | 远程光电容积描记术(rPPG) | 深度学习 | 图像 | 145篇文章 |
5627 | 2025-06-24 |
Identifying kinematic biomarkers of the dystrophic phenotype in a zebrafish model of Duchenne muscular dystrophy
2025-Jun-20, Skeletal muscle
IF:5.3Q2
DOI:10.1186/s13395-025-00382-6
PMID:40542412
|
研究论文 | 本研究利用高速摄像和基于深度学习的无标记运动捕捉技术,量化了两种肌营养不良斑马鱼模型的逃避反应游泳运动学,以识别杜氏肌营养不良表型的运动学生物标志物 | 采用无标记运动捕捉技术提供高精度、可重复的运动学估计,并利用随机森林和支持向量机模型识别区分突变型和野生型斑马鱼幼体的预测性生物标志物 | 研究仅针对斑马鱼模型,结果是否适用于其他动物模型或人类尚需进一步验证 | 识别杜氏肌营养不良表型的运动学生物标志物,为治疗开发提供早期评估工具 | 两种肌营养不良斑马鱼模型(sapje和sapje-like)的幼体 | 数字病理学 | 杜氏肌营养不良 | 高速摄像、深度学习、无标记运动捕捉 | 随机森林、支持向量机 | 视频 | 两种斑马鱼模型(具体数量未明确说明) |
5628 | 2025-06-24 |
Ferroelectric Domains and Evolution Dynamics in Twisted CuInP2S6 Bilayers
2025-Jun-20, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202500683
PMID:40538291
|
研究论文 | 通过密度泛函理论和深度学习分子动力学模拟,研究了扭曲双层铁电材料CuInP2S6中极性畴的形成和动态控制 | 揭示了扭曲双层铁电材料中极性畴的形成机制,提出通过旋转操控控制局部极化的新方法 | 研究仅限于理论模拟,缺乏实验验证 | 探索扭曲角度对铁电材料中极性畴演化的影响 | 扭曲双层铁电材料CuInP2S6 | 材料科学 | NA | 密度泛函理论(DFT), 深度学习分子动力学(DLMD) | NA | 模拟数据 | NA |
5629 | 2025-06-06 |
Intrapartum electronic fetal monitoring: the importance of accurate signal capture to harness the potential of deep learning
2025-Jun-02, American journal of obstetrics and gynecology
IF:8.7Q1
DOI:10.1016/j.ajog.2025.05.026
PMID:40466886
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
5630 | 2025-06-24 |
Artificial Intelligence-Assisted Detection of Breast Cancer Lymph Node Metastases in the Post-Neoadjuvant Treatment Setting
2025-Jun, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2025.104121
PMID:40020876
|
研究论文 | 本研究开发了一种可解释的深度学习流程,用于在乳腺癌新辅助治疗后检测淋巴结转移 | 首次评估了深度学习算法在乳腺癌新辅助治疗后淋巴结转移检测中的泛化能力,并研究了治疗后效应训练数据对算法性能的影响 | 研究仅针对乳腺癌患者,未评估其他癌症类型的适用性 | 开发并评估一种AI辅助的乳腺癌淋巴结转移检测方法 | 乳腺癌新辅助治疗后的淋巴结组织 | 数字病理学 | 乳腺癌 | 深度学习 | CNN | 病理切片图像 | 1027张病理切片 |
5631 | 2025-06-24 |
Integrative deep learning and radiomics analysis for ovarian tumor classification and diagnosis: a multicenter large-sample comparative study
2025-Jun, La Radiologia medica
DOI:10.1007/s11547-025-02006-x
PMID:40167932
|
研究论文 | 本研究评估了结合经阴道超声(US)的放射组学和深度学习模型在大规模研究中准确区分良性和恶性卵巢肿瘤的有效性 | 结合CNN和放射组学模型,提供更准确可靠的卵巢肿瘤诊断方法,优于单独模型和专家评估 | 回顾性研究设计可能影响结果的普遍性 | 评估结合放射组学和深度学习模型在卵巢肿瘤诊断中的有效性 | 良性和恶性卵巢肿瘤 | 数字病理学 | 卵巢癌 | 经阴道超声(US) | CNN | 图像 | 2078名患者的3193张图像 |
5632 | 2025-06-24 |
FedOpenHAR: Federated Multitask Transfer Learning for Sensor-Based Human Activity Recognition
2025-Jun, Journal of computational biology : a journal of computational molecular cell biology
IF:1.4Q2
DOI:10.1089/cmb.2024.0631
PMID:40267073
|
研究论文 | 介绍FedOpenHAR框架,探索在传感器基础的人类活动识别和设备位置识别任务中的联邦迁移学习 | 提出FedOpenHAR框架,结合联邦学习和迁移学习,支持多任务处理,并在新客户端加入时能利用已有共同层进行训练 | 需要处理不同数据集中可能只包含部分标签类型的问题 | 开发适用于传感器基础的人类活动识别和设备位置识别的联邦学习框架 | 传感器数据 | 机器学习 | NA | 联邦学习,迁移学习 | DeepConvLSTM | 传感器数据 | OpenHAR框架中的十个较小数据集 |
5633 | 2025-06-24 |
QRS-centric beat-wise atrial fibrillation detection in ECG signals using deep neural networks
2025-Jun, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110282
PMID:40378565
|
research paper | 提出了一种基于深度学习的逐搏心房颤动(AF)检测方法,通过QRS波群中心的自适应分割提高检测精度 | 采用QRS波群中心的自适应分割方法,结合CNN和双向LSTM网络,实现了逐搏级别的高精度AF检测 | 未提及模型在噪声环境下的鲁棒性测试 | 开发高精度的逐搏级别心房颤动自动检测方法 | 心电图信号中的心房颤动 | digital pathology | cardiovascular disease | ECG信号分析 | CNN + bidirectional LSTM | ECG信号 | MIT-BIH心律失常数据库、MIT-BIH心房颤动数据库、MIMIC-III和Simband数据集 |
5634 | 2025-06-24 |
Integrating Alternative Fragmentation Techniques into Standard LC-MS Workflows Using a Single Deep Learning Model Enhances Proteome Coverage
2025-Jun-01, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.28.656555
PMID:40501536
|
研究论文 | 本文介绍了一种能够自动执行多种碎片化技术的质谱仪,并开发了一个统一的深度学习模型来预测碎片离子强度,从而提高了蛋白质组覆盖范围 | 开发了一个能够覆盖多种碎片化技术的单一Prosit深度学习模型,并公开了该模型 | NA | 提高蛋白质组学实验中蛋白质的识别效率 | 质谱仪和碎片化技术 | 质谱分析 | NA | CID, UVPD, EID, ECD, LC-MS | Prosit深度学习模型 | 质谱数据 | NA |
5635 | 2025-06-24 |
Neural Spectral Prediction for Structure Elucidation with Tandem Mass Spectrometry
2025-Jun-01, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.28.656653
PMID:40501725
|
研究论文 | 本文提出了一种名为ICEBERG的几何深度学习模型,用于模拟质谱中的碰撞诱导解离,以生成化学上合理的碎片及其相对强度,从而促进分子结构的解析 | ICEBERG模型能够模拟碰撞诱导解离,生成化学上合理的碎片及其相对强度,并考虑碰撞能量和极性,显著提高了化合物注释的准确性 | 未明确提及具体限制,但可能涉及模型在更复杂或未知结构上的泛化能力 | 开发一种深度学习模型,用于快速准确地解析未知分子结构 | 分子结构的解析,特别是代谢组学、药物发现和反应筛选中的同量异位结构 | 机器学习和质谱分析 | 抑郁症和结核性脑膜炎 | 串联质谱(MS/MS)和深度学习 | 几何深度学习模型(ICEBERG) | 质谱数据 | NIST'20 [M+H]加合物子集 |
5636 | 2025-06-24 |
In Toto Adipocytes Analysis Using Hydrophilic Tissue Clearing, Light Sheet Microscopy, and Deep Learning-Based Image Processing
2025-Jun, Biology of the cell
IF:2.4Q4
DOI:10.1111/boc.70013
PMID:40544484
|
research paper | 本研究开发了一种创新的3D成像方法,结合组织透明化、光片显微镜和深度学习技术,用于评估脂肪细胞体积 | 首次结合无脱脂步骤的组织透明化、光片显微镜和深度学习技术,实现脂肪组织的3D成像和自动分析 | 目前仅在肥胖和健康大鼠的肠系膜脂肪组织中进行验证,尚未在其他组织或疾病模型中应用 | 开发一种创新的3D成像方法来准确评估脂肪细胞体积,克服传统技术的局限性 | 肥胖和健康大鼠的肠系膜脂肪组织中的脂肪细胞 | digital pathology | obesity | hydrophilic tissue clearing, light sheet microscopy, deep learning | deep learning | 3D image | 肥胖和健康大鼠的肠系膜脂肪组织样本 |
5637 | 2025-06-24 |
Evaporative cooling signals for wound healing in plants
2025-May-28, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.23.655667
PMID:40502075
|
研究论文 | 本文研究了植物叶片受伤后局部冷却现象及其与伤口愈合的关系,并提出了一种利用计算机视觉和深度学习监测伤口愈合动态的方法 | 发现伤口诱导的局部冷却现象作为伤口愈合的定量标记,并开发了基于计算机视觉和深度学习的伤口愈合监测工作流程 | 研究仅限于拟南芥叶片,未验证其他植物或组织类型的适用性 | 探索植物伤口愈合的后期机制并开发定量监测工具 | 拟南芥叶片 | 计算机视觉 | NA | 计算机视觉、深度学习 | 深度学习 | 图像 | NA |
5638 | 2025-06-24 |
Cellular and subcellular specialization enables biology-constrained deep learning
2025-May-27, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.22.655599
PMID:40501912
|
research paper | 该研究探讨了生物约束深度学习如何通过细胞和亚细胞特化实现,以模拟大脑中的学习和记忆机制 | 提出了一种完全符合生物学约束的深度学习算法,模拟了神经元细胞类型和树突区室化信号的特化 | 模型的生物学约束可能限制了其在更广泛的人工智能应用中的适用性 | 探索大脑如何通过神经元细胞类型和树突区室化信号协调多层神经回路中的学习 | 人工神经网络(ANNs)和神经元细胞类型 | machine learning | NA | 深度学习算法 | ANN | image | NA |
5639 | 2025-06-24 |
A pediatric ECG database with disease diagnosis covering 11643 children
2025-May-26, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05225-z
PMID:40419508
|
research paper | 该研究提出了一个包含11643名0-14岁儿童的心电图数据库,用于心血管疾病的智能诊断 | 该数据库专注于儿童心血管疾病诊断,填补了现有ECG数据集主要关注成人且缺乏疾病诊断信息的空白 | 数据仅来自郑州大学第一附属医院的住院儿童,可能无法完全代表所有儿童群体 | 为儿童心血管疾病的智能诊断提供充足的数据支持 | 0-14岁儿童的心电图数据 | digital pathology | cardiovascular disease | ECG | NA | ECG记录 | 11643名住院儿童,包含14190份儿科ECG记录 |
5640 | 2025-06-24 |
Artificial Intelligence Applied to Ultrasound Diagnosis of Pelvic Gynecological Tumors: A Systematic Review and Meta-Analysis
2025-May-08, Gynecologic and obstetric investigation
IF:2.0Q2
DOI:10.1159/000545850
PMID:40340944
|
meta-analysis | 本文通过系统综述和荟萃分析评估了人工智能在超声诊断盆腔妇科肿瘤中的应用效果 | 首次对AI在妇科盆腔肿瘤超声诊断中的研究进行系统性评估,并与现有ADNEX模型进行性能比较 | 95%的研究存在高偏倚风险,主要源于不恰当的研究纳入标准、缺乏患者级别的训练测试集划分以及未进行校准评估 | 评估AI模型在超声诊断妇科盆腔肿瘤中的鉴别性能 | 妇科盆腔肿瘤(卵巢、子宫内膜和子宫肌层病变) | 数字病理 | 妇科肿瘤 | 超声成像 | 深度学习模型与基于放射组学的机器学习方法 | 超声图像 | 44项研究(40项卵巢病理、3项子宫内膜病理和1项子宫肌层病理研究) |