深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24907 篇文献,本页显示第 5721 - 5740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
5721 2025-04-04
Deep Learning-Based Framework for Efficient Design of Multicomponent High Hardness High Entropy Alloys
2025-Apr-02, ACS applied materials & interfaces IF:8.3Q1
研究论文 提出了一种基于深度学习的框架,用于高效设计多组分高硬度高熵合金 结合材料领域知识与数据驱动技术,开发了材料串联嵌入模块与BiLSTM-CRF网络,自动化分析文献并提取数据,采用两阶段设计策略(GA与PSO结合)优化合金系统与成分比例 未明确提及实验验证的广泛性或实际应用中的性能稳定性 优化多组分高硬度高熵合金的设计过程 高熵合金(HEAs) 机器学习 NA 深度学习、遗传算法(GA)、粒子群优化(PSO) BiLSTM-CRF 文本、数值数据 2698篇论文中提取的8067个数据点,构建的硬度数据集包含13种元素
5722 2025-04-04
Revisiting One-stage Deep Uncalibrated Photometric Stereo via Fourier Embedding
2025-Apr-02, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 本文提出了一种名为FUPS-Net的单阶段深度未校准光度立体网络,用于未知光照方向下的非朗伯物体表面法线估计 通过傅里叶变换网络隐式学习光照特征,利用傅里叶域中振幅编码光照、相位编码几何的特性来分解几何与光照信息,提出频率-空间加权块增强表面重建 未明确说明对复杂光照条件或极端非朗伯材质的处理能力 解决传统两阶段未校准光度立体方法中光照估计误差传播问题 非朗伯物体在未知光照方向下的表面法线估计 computer vision NA 傅里叶变换 FUPS-Net (包含FEE、FEA、FSW模块) 光度立体图像 合成数据集和真实数据集(未说明具体数量)
5723 2025-04-04
Beyond the Posts: Analyzing Breast Implant Illness Discourse With Natural Language Processing and Deep Learning
2025-Apr-02, Aesthetic surgery journal IF:3.0Q1
研究论文 使用自然语言处理和深度学习分析社交媒体上关于乳房植入物疾病(BII)的患者感知和情感反应 利用RoBERTa模型分析社交媒体数据,揭示BII讨论的情感趋势及其与乳房植入物取出率的相关性 研究仅基于X平台(原Twitter)的数据,可能无法全面代表所有社交媒体或患者群体的观点 了解患者对BII的感知和情感反应,并探讨社交媒体讨论对医疗决策的影响 社交媒体上关于BII的帖子 自然语言处理 乳房植入物疾病 NLP, 深度学习 RoBERTa 文本 6,099条帖子(2014-2023年)
5724 2025-04-04
Prediction of Future Risk of Moderate to Severe Kidney Function Loss Using a Deep Learning Model-Enabled Chest Radiography
2025-Apr-02, Journal of imaging informatics in medicine
research paper 本研究评估了一种利用原始胸部X光数据预测中度至重度肾功能下降的深度学习模型 首次使用深度学习模型通过胸部X光数据预测慢性肾脏病的进展风险 研究为回顾性分析,需要前瞻性研究进一步验证 开发早期预测慢性肾脏病进展风险的工具 79,219名eGFR在65-120之间的患者 digital pathology chronic kidney disease deep learning DLM image 79,219名患者的胸部X光数据
5725 2025-04-04
Application of an Automated Deep Learning Program to A Diagnostic Classification Model: Differentiating High-Risk Adenomas Among Colorectal Polyps 10 mm or Smaller
2025-Apr-02, Journal of digestive diseases IF:2.3Q3
研究论文 本研究开发了一种基于自动深度学习程序的计算机辅助诊断模型,用于分类≤10毫米结直肠息肉中的低风险和高风险腺瘤 使用自动深度学习软件Neuro-T v3.2.1开发CADx模型,其性能与专家相当且优于学员 研究仅使用了静态内窥镜图像,未考虑动态视频或临床背景信息 开发能区分≤10毫米结直肠息肉中高风险和低风险腺瘤的计算机辅助诊断模型 ≤10毫米的结直肠腺瘤 数字病理学 结直肠癌 自动深度学习 DL 内窥镜图像 2696张训练图像(2460张低级别和236张高级别腺瘤)和439张外部验证图像(398张低级别和41张高级别腺瘤)
5726 2025-04-04
What's new in pediatric musculoskeletal imaging
2025-Apr, Journal of children's orthopaedics
review 本文综述了儿科肌肉骨骼影像学领域的最新技术进展,包括成像方式的创新和人工智能应用 探讨了辐射剂量减少技术、对比增强超声和超高频率成像等增强诊断工具,以及人工智能在病理检测和工作流程优化中的应用 存在外部验证和范围有限等挑战 提高儿科肌肉骨骼护理的诊断准确性和治疗效果 儿科肌肉骨骼影像学 digital pathology NA advanced magnetic resonance imaging, ultrasound innovations, artificial intelligence, photon-counting detector computed tomography, deep learning-based reconstructions, diffusion-weighted imaging, positron emission tomography-magnetic resonance imaging integration deep learning image NA
5727 2025-04-04
A Single-Camera Method for Estimating Lift Asymmetry Angles Using Deep Learning Computer Vision Algorithms
2025-Apr, IEEE transactions on human-machine systems IF:3.5Q1
research paper 提出了一种使用深度学习计算机视觉算法从单摄像头估计提升不对称角度的方法 利用单摄像头和深度学习算法自动测量NIOSH提升方程的不对称角度,解决了实际场景中视野受阻和摄像头放置限制的问题 与3D运动捕捉相比,平均绝对精度误差为6.25°,平均绝对准确度误差为9.45° 开发一种自动测量提升不对称角度的计算机视觉方法 十名参与者在实验室环境中进行的各种提升动作 computer vision NA HR-Net和VideoPose3D算法 HR-Net, VideoPose3D video 10名参与者,360个数据点
5728 2025-04-04
Benchmarking deep learning for automated peak detection on GIWAXS data
2025-Apr-01, Journal of applied crystallography IF:5.2Q1
研究论文 本文提出了一个用于评估深度学习在GIWAXS数据自动峰值检测中性能的综合框架 引入了包含标注实验数据集、物理信息指标和优化基线算法的全面框架,并首次对基于模拟数据训练的深度学习解决方案进行了系统评估 研究可能受限于标注数据集的大小和多样性,以及基线算法的选择 评估深度学习在GIWAXS数据峰值检测中的可靠性并建立标准化评估体系 GIWAXS衍射图像数据 机器学习和X射线散射数据分析 NA GIWAXS和深度学习技术 未明确说明具体DL模型类型 X射线衍射图像数据 未明确说明具体样本数量,但提到单日可产生数十万衍射图像
5729 2025-04-04
Generating Synthetic T2*-Weighted Gradient Echo Images of the Knee with an Open-source Deep Learning Model
2025-Apr-01, Academic radiology IF:3.8Q1
research paper 开发一个开源深度学习模型,用于从脂肪抑制中间加权图像生成膝关节的合成T2*加权梯度回波图像 开发了一个开源的CycleGAN模型,能够从常规MRI图像生成具有高诊断价值的合成T2*加权图像 识别出四种伪影,包括几何畸变、物体插入/遗漏、环绕样伪影和不完全脂肪抑制伪影,尽管这些伪影对诊断影响较小 开发一个深度学习模型,生成膝关节的合成T2*加权梯度回波图像,以补充常规MRI协议 膝关节MRI图像 digital pathology NA MRI CycleGAN image 训练集12,118张矢状位膝关节MR图像,测试集2,996张图像
5730 2025-04-04
Generating synthetic brain PET images of synaptic density based on MR T1 images using deep learning
2025-Mar-31, EJNMMI physics IF:3.0Q2
研究论文 本研究利用深度学习技术基于MRI T1图像生成合成的大脑突触密度PET图像 首次使用卷积基础的3D编码器-解码器模型从MRI生成[11C]UCB-J SV2A PET合成图像,解决了SV2A示踪剂在实际应用中的可获得性问题 研究样本量相对有限(160名参与者),且未明确说明模型在不同疾病群体间的泛化能力 开发一种通过MRI生成合成[11C]UCB-J PET图像的方法,以解决SV2A示踪剂在实际应用中的限制 160名同时接受MRI和[11C]UCB-J PET成像的参与者,包括精神分裂症、大麻使用障碍和阿尔茨海默病患者 数字病理学 神经系统疾病 深度学习 3D CNN编码器-解码器 医学影像(MRI和PET图像) 160名参与者
5731 2025-04-04
Partial discharge defect recognition method of switchgear based on cloud-edge collaborative deep learning
2025-Mar-31, Scientific reports IF:3.8Q1
研究论文 提出了一种基于边缘计算和深度学习的开关柜局部放电联合识别方法 构建了终端设备侧、终端采集侧、边缘计算侧和云计算侧的边缘协同缺陷识别架构,并基于DBN提出了开关柜局部放电缺陷识别方法 验证使用的是实验室模拟的局部放电样本,实际应用中的效果可能需要进一步验证 解决传统局部放电检测方法在实时监测、快速评估、样本融合和联合分析方面的不足 开关柜的局部放电信号 机器学习 NA UHF传感器和宽带脉冲电流传感器 DBN 信号数据 实验室模拟的局部放电样本
5732 2025-04-04
Well log data generation and imputation using sequence based generative adversarial networks
2025-Mar-31, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于序列生成对抗网络(GANs)的新框架,用于测井数据的生成和缺失数据填补 采用两种序列GAN模型(TSGAN和SeqGAN)分别进行合成数据生成和缺失数据填补,在北海荷兰地区数据集上验证了其优越性 实验仅使用了特定区域(北海荷兰地区)的数据集,未验证在其他地质区域的泛化能力 解决测井数据中的缺失和不准确定问题,提高储层评估的可靠性 测井数据 机器学习 NA 生成对抗网络(GANs) TSGAN, SeqGAN 时间序列数据 5、10和50个数据点的不同区段
5733 2025-04-04
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors
2025-Mar-30, Insights into imaging IF:4.1Q1
review 本文综述了影像组学在脑肿瘤研究中的应用及其可解释性问题 整合脑肿瘤生物学领域知识与可解释性方法,提升传统手工特征影像组学和深度学习影像组学的可解释性 深度学习模型缺乏生物学机制基础 探讨影像组学在脑肿瘤研究中的应用及其临床转化潜力 脑肿瘤影像组学 digital pathology brain tumors radiomics deep learning-based models medical imaging NA
5734 2025-04-04
Dual discriminator GAN-based synthetic crop disease image generation for precise crop disease identification
2025-Mar-30, Plant methods IF:4.7Q1
研究论文 本文提出了一种基于双判别器GAN的合成作物病害图像生成方法,用于提高作物病害识别的精确度 设计了具有双判别器结构的频域和小波图像增强网络(FHWD),结合小波损失和快速傅里叶变换损失函数,提升生成图像的视觉质量和真实性 实验仅在PlantVillage数据集的十种作物病害上进行,未验证在其他作物病害上的泛化能力 解决作物病害图像稀缺问题,提升深度学习模型的病害识别准确率和泛化能力 作物病害图像 计算机视觉 作物病害 GAN 双判别器GAN 图像 PlantVillage数据集中的十种作物病害
5735 2025-04-04
Deep learning-based mobile application for efficient eyelid tumor recognition in clinical images
2025-Mar-30, NPJ digital medicine IF:12.4Q1
research paper 本研究验证了一种基于深度学习的移动应用程序,用于自我诊断眼睑肿瘤,以改善患者的健康支持系统 开发了一种基于YOLOv5和Efficient-Net v2-B架构的移动应用,用于眼睑肿瘤的自我诊断,其准确率高于普通医生、住院医生和眼科专家 研究仅基于1195张预处理临床眼部照片和活检结果,样本量可能不足以覆盖所有眼睑肿瘤类型 开发一种高效的移动应用程序,用于眼睑肿瘤的早期检测和监测 眼睑肿瘤患者 computer vision 眼睑肿瘤 深度学习 YOLOv5, Efficient-Net v2-B image 1195张预处理临床眼部照片和活检结果
5736 2025-04-04
An integration of ensemble deep learning with hybrid optimization approaches for effective underwater object detection and classification model
2025-Mar-29, Scientific reports IF:3.8Q1
research paper 该研究提出了一种结合集成深度学习和混合优化算法的水下物体检测与分类模型(UODC-EDLHOA) 采用集成深度学习方法(DNN、DBN、LSTM)和混合优化算法(STSC)进行水下物体检测与分类,提高了检测精度 未提及模型在实时性、计算资源消耗或实际部署中的表现 提升水下物体检测与分类的准确性和鲁棒性 水下物体 computer vision NA deep learning, hybrid optimization algorithms EfficientNetB7, YOLOv9, DNN, DBN, LSTM image UOD数据集(未提及具体数量)
5737 2025-04-04
Quantitative analysis and visualization of chemical compositions during shrimp flesh deterioration using hyperspectral imaging: A comparative study of machine learning and deep learning models
2025-Mar-29, Food chemistry IF:8.5Q1
研究论文 利用高光谱成像技术定量分析虾肉变质过程中的化学成分变化,并比较机器学习和深度学习模型的性能 结合低层数据融合和预测模型,比较了传统化学计量学方法和深度学习方法在虾肉变质分析中的表现,并生成了化学成分变化的空间分布图 未来研究需要优化模型以适应不同条件,并探索将高光谱成像方法与其他传感器技术结合 快速、无损地预测虾肉变质过程中的化学成分变化,监控冷链物流中的虾肉质量 虾肉 计算机视觉 NA 高光谱成像(HSI) PLS, CNN, LSTM, CNN-LSTM 图像 NA
5738 2025-04-04
Skin Cancer Detection Using Deep Learning Approaches
2025-Mar-28, Cancer biotherapy & radiopharmaceuticals
综述 本文综述了多种深度学习方法在皮肤癌检测中的应用及其效果 比较了不同深度学习模型在皮肤病变识别和分类中的性能,并指出GAN在训练数据增强方面的潜力 现有数据集存在肤色多样性不足、计算需求高和病变样本不均衡等问题,影响了模型的效率和泛化能力 通过深度学习技术提高皮肤癌的早期检测准确率 皮肤病变图像 计算机视觉 皮肤癌 深度学习 ANN, CNN, KNN, GAN 图像 NA
5739 2025-04-04
Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions
2025-Mar-27, The American journal of emergency medicine
研究论文 评估大型语言模型在急诊胸部X光片解读中对急性胸部疾病的准确性 探索大型语言模型(如ChatGPT)在急诊放射学中的应用潜力,特别是在胸部X光片解读方面的表现 模型对某些细微病变(如肺不张和肺气肿)的诊断准确性较低,需要进一步改进 评估ChatGPT在急诊胸部X光片解读中的可行性和准确性 急诊胸部X光片中的急性胸部疾病 自然语言处理 胸部疾病 大型语言模型(ChatGPT 4.0) LLM 图像 1400张来自NIH Chest X-ray数据集的图像,涵盖7种病理类别
5740 2025-04-04
Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort
2025-Mar-25, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
research paper 本研究开发了一种不确定性感知的深度学习模型,用于口咽癌原发肿瘤和病理淋巴结的分割,并在多中心队列中验证了其准确性 扩展了现有网络以同时生成原发肿瘤和病理淋巴结的体素级预测概率(TPM),并探索了结构级不确定性是否能够预测分割模型的准确性 研究依赖于回顾性数据,且外部测试集仅来自HECKTOR 2022挑战赛数据集 评估深度学习模型在口咽癌原发肿瘤和病理淋巴结分割中的准确性,并探索不确定性量化在临床中的应用潜力 口咽癌患者 digital pathology oropharyngeal cancer PET/CT imaging deep learning image 407名口咽癌患者
回到顶部