本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5741 | 2025-04-05 |
MEF2C controls segment-specific gene regulatory networks that direct heart tube morphogenesis
2025-Mar-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.01.621613
PMID:39554149
|
研究论文 | 本研究探讨了转录因子MEF2C在早期心脏形成中控制的基因调控网络(GRNs)及其对心脏管形态发生的影响 | 通过单核RNA和ATAC测序时间序列分析,揭示了MEF2C缺失导致的‘后化’心脏基因特征和染色质景观,并利用深度学习模型构建了心脏各段的发育轨迹 | 研究主要基于小鼠胚胎模型,结果在其他物种中的普适性需要进一步验证 | 解析早期心脏管形成过程中谱系特异性基因调控网络 | 野生型和MEF2C缺失胚胎的心脏发育过程 | 发育生物学 | 心脏发育异常 | 单核RNA测序(snRNA-seq)、ATAC测序、深度学习 | 深度学习模型 | 基因组数据、表观基因组数据 | 野生型和MEF2C缺失胚胎(具体数量未明确说明) |
5742 | 2025-04-05 |
AGPred: An End-to-End Deep Learning Model to Predicting Drug Approvals in Clinical Trials Based on Molecular Features
2025-Mar-06, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3547315
PMID:40048330
|
research paper | 提出了一种基于深度学习的端到端模型AGPred,用于预测药物在临床试验中的批准率 | 采用基于注意力的图神经网络(GNN)自动学习药物分子表示,并结合交叉注意力融合模块学习分子指纹特征,整合药物的理化性质 | 未提及具体的数据集规模限制或模型泛化能力的局限性 | 提高药物临床试验批准率的预测准确性 | 药物分子 | machine learning | NA | deep learning, GNN | attention-based GNN | molecular graphs, molecular fingerprints, physicochemical properties | 未明确提及具体样本数量 |
5743 | 2025-04-05 |
Weakly Supervised Deep Learning Can Analyze Focal Liver Lesions in Contrast-Enhanced Ultrasound
2025-Mar-06, Digestion
IF:3.0Q2
DOI:10.1159/000545098
PMID:40049151
|
研究论文 | 本研究评估了弱监督深度学习模型在分类肝脏局灶性病变良恶性方面的性能 | 使用弱监督注意力机制的多实例学习算法,无需手动标注,仅使用病例标签进行训练 | 研究为回顾性研究,样本来自单一医疗机构 | 开发辅助诊断肝脏局灶性病变良恶性的AI算法 | 肝脏局灶性病变(FLLs)患者 | 数字病理 | 肝脏疾病 | 对比增强超声(CEUS) | 注意力机制的多实例学习算法 | 图像 | 370名患者,共955,938张CEUS图像 |
5744 | 2025-04-05 |
Epicardial adipose tissue, myocardial remodelling and adverse outcomes in asymptomatic aortic stenosis: a post hoc analysis of a randomised controlled trial
2025-Mar-06, Heart (British Cardiac Society)
DOI:10.1136/heartjnl-2024-324925
PMID:40050004
|
研究论文 | 本研究探讨了心外膜脂肪组织与无症状主动脉瓣狭窄患者的疾病严重程度、进展、心肌重塑和功能以及死亡率之间的关系 | 首次在心外膜脂肪组织与无症状主动脉瓣狭窄患者的疾病严重程度、进展及死亡率之间建立关联,并发现其与心肌健康受损的生物标志物相关 | 样本量较小(124例患者),且为事后分析,可能影响结果的普遍性 | 研究心外膜脂肪组织在主动脉瓣狭窄中的作用 | 无症状的轻度至重度主动脉瓣狭窄患者 | 心血管疾病 | 主动脉瓣狭窄 | CT血管造影和深度学习软件 | 深度学习 | 医学影像和生物标志物数据 | 124例无症状主动脉瓣狭窄患者 |
5745 | 2025-04-05 |
Conditioning generative latent optimization for sparse-view computed tomography image reconstruction
2025-Mar, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.2.024004
PMID:40177097
|
research paper | 提出一种无需训练数据的稀疏视图CT图像重建方法,通过条件生成潜在优化(cGLO)提高重建质量 | 无需训练数据,独立于实验设置,可从小型无监督数据集中初始化以提高重建效果 | 未提及具体在低剂量CT或其他成像任务中的表现 | 解决稀疏视图CT图像重建问题,提高重建质量 | 稀疏视图CT图像 | digital pathology | NA | 条件生成潜在优化(cGLO) | generative model | CT图像 | 未明确提及具体样本数量 |
5746 | 2025-04-05 |
Accurate V2X traffic prediction with deep learning architectures
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1565287
PMID:40176965
|
研究论文 | 本文提出了一种基于深度学习的V2X环境交通预测方法 | 使用双向长短期记忆网络(BiLSTM)进行交通预测,并与其他深度学习架构进行比较,展示了BiLSTM在预测精度上的优势 | 未提及具体的数据集规模或实际部署中的潜在问题 | 提高V2X通信环境下的交通预测准确性 | V2X通信环境下的交通数据 | 机器学习 | NA | 深度学习 | BiLSTM, LSTM, GRU | 交通数据 | NA |
5747 | 2025-04-05 |
A flexible transoral swab sampling robot system with visual-tactile fusion approach
2025, Frontiers in robotics and AI
IF:2.9Q2
DOI:10.3389/frobt.2025.1520374
PMID:40177224
|
研究论文 | 提出了一种基于视觉-触觉融合方法的经口拭子采样机器人系统,用于自主进行核酸采样 | 采用视觉-触觉融合方法进行导航,结合串并联混合柔性机构实现精确的远端姿态调整 | 初步实验阶段,尚未大规模验证其安全性和准确性 | 解决核酸采样过程中需要大量医护人员参与的问题 | 经口拭子采样机器人系统 | 机器人技术 | COVID-19, 季节性流感 | 深度学习, 视觉-触觉感知 | 深度学习 | 图像, 触觉反馈 | 初步实验阶段,未提及具体样本量 |
5748 | 2025-04-05 |
Measurement-guided therapeutic-dose prediction using multi-level gated modality-fusion model for volumetric-modulated arc radiotherapy
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1468232
PMID:40177241
|
研究论文 | 开发了一种用于头颈癌放射治疗中测量引导治疗剂量预测的新型深度学习模型 | 提出了一种多级门控模态融合模型,能够整合CT和剂量图像的多尺度特征,并充分利用不同模态间的相互促进作用 | 在皮肤或热塑性面罩压痕边界附近的区域,预测剂量值与真实值存在较大差异 | 提高头颈癌放射治疗前患者特定质量保证(prePSQA)的效率和准确性 | 头颈癌放射治疗患者 | 数字病理 | 头颈癌 | 容积调强弧形放射治疗(VMAT) | 多级门控模态融合模型 | 医学影像(CT和剂量图像) | 310例接受VMAT治疗的患者(训练集186例,验证集62例,测试集62例) |
5749 | 2025-04-05 |
Construction of a predictive model for the efficacy of anti-VEGF therapy in macular edema patients based on OCT imaging: a retrospective study
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1505530
PMID:40177270
|
研究论文 | 基于OCT影像和深度学习构建预测模型,用于评估抗VEGF治疗黄斑水肿患者的疗效 | 创新性地引入组卷积和多卷积核处理多维特征,结合空间金字塔池化(SPP)提取最有用的特征,并利用ResNet50作为预训练模型进行模型融合 | 研究为回顾性研究,可能存在选择偏倚,且样本量未明确说明 | 开发自动化和高效的方法预测抗VEGF治疗黄斑水肿患者的疗效 | 黄斑水肿患者 | 数字病理 | 黄斑水肿 | OCT成像 | ResNet50结合注意力机制和SPP的深度学习模型 | 图像 | NA |
5750 | 2025-04-05 |
The promise and limitations of artificial intelligence in CTPA-based pulmonary embolism detection
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1514931
PMID:40177281
|
综述 | 本文综述了人工智能在CTPA肺动脉栓塞检测中的应用及其前景与局限性 | 探讨了AI在CTPA图像分析中的能力,特别是在使用深度学习模型检测肺动脉栓塞方面的敏感性和特异性,以及与人类放射科医生的比较 | 算法偏见、可解释性问题以及严格验证的必要性,这些限制了AI在临床实践中的广泛应用 | 研究AI在CTPA肺动脉栓塞检测中的角色,以提高诊断精确性和效率 | CTPA图像中的肺动脉栓塞 | 数字病理学 | 肺动脉栓塞 | 深度学习 | 复杂神经网络 | CTPA图像 | 大型数据集 |
5751 | 2025-04-05 |
A Plantar Pressure Detection and Gait Analysis System Based on Flexible Triboelectric Pressure Sensor Array and Deep Learning
2025-01, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202405064
PMID:39473332
|
研究论文 | 开发了一种基于柔性摩擦电压力传感器阵列和深度学习的足底压力检测与步态分析系统 | 采用柔性、透气、可穿戴的静电纺丝纳米纤维膜作为足底压力传感器,并集成了32个FTPS到智能鞋垫中,实现了高灵敏度和无需外部电源的实时步态检测 | 未提及系统在极端环境下的性能表现或长期使用的耐久性测试 | 开发一种可穿戴、自供电的步态检测系统,用于人体健康评估和疾病早期诊断 | 足底压力与步态分析 | 机器学习 | NA | 静电纺丝纳米纤维膜技术 | LSTM | 压力传感器数据 | 未明确提及样本数量 |
5752 | 2025-04-05 |
Preoperative Ultrasound Radomics to Predict Posthepatectomy Liver Failure in Patients With Hepatocellular Carcinoma
2024-Dec, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
IF:2.1Q2
DOI:10.1002/jum.16559
PMID:39177192
|
研究论文 | 该研究开发了一种基于二维剪切波弹性成像和临床数据的深度学习方法,用于预测慢性乙型肝炎相关肝细胞癌患者术后肝功能衰竭的风险 | 提出了结合双模态超声特征和临床指标的深度学习模型PHLF-Net,采用渐进式训练策略,并在多个独立测试集中验证了其有效性 | 研究样本量相对有限(532例患者),且主要针对慢性乙型肝炎相关肝细胞癌患者 | 开发预测肝细胞癌患者术后肝功能衰竭风险的方法 | 接受肝切除术的肝细胞癌患者 | 数字病理学 | 肝细胞癌 | 二维剪切波弹性成像 | ResNet50 | 超声图像(B模式和弹性成像)及临床指标 | 532例肝细胞癌患者(来自5家医院) |
5753 | 2025-04-05 |
RiceSNP-ABST: a deep learning approach to identify abiotic stress-associated single nucleotide polymorphisms in rice
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae702
PMID:39757606
|
研究论文 | 提出了一种名为RiceSNP-ABST的深度学习模型,用于识别水稻中与非生物胁迫相关的单核苷酸多态性(SNPs) | 开发了一种新的负样本构建策略,提出了四种基于DNA序列片段的特征编码方法,并采用带有残差连接的卷积神经网络进行预测 | 高质量的水稻非生物胁迫相关数据稀缺,可能影响模型的泛化能力 | 开发预测模型以识别水稻中与非生物胁迫相关的SNPs,助力水稻抗性品种的培育 | 水稻中的单核苷酸多态性(SNPs) | 机器学习 | NA | 全基因组关联研究(GWAS) | CNN | DNA序列 | NA |
5754 | 2025-04-05 |
GPS-pPLM: A Language Model for Prediction of Prokaryotic Phosphorylation Sites
2024-11-08, Cells
IF:5.1Q2
DOI:10.3390/cells13221854
PMID:39594603
|
research paper | 介绍了一个名为GPS-pPLM的在线服务器,用于预测原核生物中的磷酸化位点 | 结合了transformer和深度神经网络两种深度学习方法,整合了10种序列特征和上下文特征,构建了针对特定磷酸化残基类型和物种的预测模型 | NA | 预测原核生物中的磷酸化位点 | 原核生物中的磷酸化位点 | natural language processing | NA | transformer, deep neural network | transformer, DNN | protein sequences | 44,839个非冗余磷酸化位点,来自16,041个蛋白质和95种原核生物 |
5755 | 2025-04-05 |
Dynamic modulation of social gaze by sex and familiarity in marmoset dyads
2024-Nov-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.16.580693
PMID:38405818
|
research paper | 开发了一种新框架,用于准确追踪自由活动的普通狨猴的面部特征和三维头部注视方向,研究了性别和熟悉度对狨猴互动社交注视行为的影响 | 结合深度学习计算机视觉工具和三角测量算法,实现了对自由活动狨猴面部特征和头部注视方向的准确追踪,克服了传统实验中头部运动受限的问题 | 研究仅针对狨猴这一特定物种,结果可能无法直接推广到其他灵长类动物 | 研究社交因素(性别和熟悉度)如何影响灵长类动物的注视行为 | 自由活动的普通狨猴 | computer vision | NA | 深度学习计算机视觉工具和三角测量算法 | deep learning-based computer vision tools | video | 狨猴成对组合(具体数量未明确说明) |
5756 | 2025-04-05 |
An All-in-One Array of Pressure Sensors and sEMG Electrodes for Scoliosis Monitoring
2024-11, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202404136
PMID:39115097
|
研究论文 | 开发了一种集成压力传感器和表面肌电电极的一体化阵列,用于脊柱侧弯监测 | 利用分层MXene/壳聚糖/聚二甲基硅氧烷(PDMS)/聚氨酯海绵和MXene/聚酰亚胺(PI)材料开发了一体化传感器阵列,具有高灵敏度和稳定性,并能通过深度学习预测Cobb角 | 未提及长期临床验证结果或大规模患者测试数据 | 改进脊柱侧弯治疗中支具效果的实时监测方法 | 脊柱侧弯患者 | 生物医学工程 | 脊柱侧弯 | MXene复合材料技术、深度学习 | 深度学习模型(未指定具体类型) | 压力数据、肌电信号 | 未明确说明样本数量 |
5757 | 2025-04-05 |
Deep learning of echocardiography distinguishes between presence and absence of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy
2024-Oct-14, Echo research and practice
IF:3.2Q2
DOI:10.1186/s44156-024-00059-8
PMID:39396969
|
研究论文 | 本研究利用深度学习技术分析超声心动图,以区分肥厚型心肌病患者心脏磁共振中晚期钆增强的存在与否 | 结合临床参数和深度学习分析的超声心动图图像,开发了一种优于仅基于临床参数的模型的新方法 | 样本量相对较小(323例),且研究为横断面设计,未进行长期预后评估 | 区分肥厚型心肌病患者心脏磁共振中晚期钆增强的阳性与阴性 | 肥厚型心肌病患者 | 数字病理学 | 心血管疾病 | 心脏磁共振(CMR)和超声心动图 | 深度卷积神经网络(DCNN) | 图像 | 323例肥厚型心肌病患者(训练集273例,测试集50例) |
5758 | 2025-04-05 |
Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia
2024-Oct, Tissue engineering. Part A
DOI:10.1089/ten.TEA.2024.0096
PMID:39041628
|
综述 | 本文综述了人工智能在口腔癌和口腔上皮异型增生中的应用,旨在开发预测性生物标志物 | 利用人工智能方法开发预测口腔上皮异型增生转化为口腔鳞状细胞癌的生物标志物,以及预测口腔鳞状细胞癌死亡率和治疗反应的生物标志物 | 目前尚无可靠的临床、病理、组织学或分子生物标志物来确定口腔上皮异型增生患者的个体风险 | 提高对口腔鳞状细胞癌和口腔上皮异型增生的预测能力,以改善患者生存率 | 口腔鳞状细胞癌(OSCC)和口腔上皮异型增生(OED)患者 | 数字病理学 | 口腔癌 | 多重免疫组织化学、深度学习、表观基因组学 | 深度学习(DL) | 图像、表观遗传数据 | NA |
5759 | 2025-04-05 |
Artificial Intelligence in Metabolomics: A Current Review
2024-Sep, Trends in analytical chemistry : TRAC
DOI:10.1016/j.trac.2024.117852
PMID:39071116
|
综述 | 本文综述了人工智能在代谢组学中的方法与应用,探讨了其在系统生物学和人类健康中的潜力 | 总结了人工智能在代谢组学分析中的多种应用,包括分析检测、数据预处理、生物标志物发现、预测建模和多组学数据整合 | 尽管存在局限性和挑战,但代谢组学与人工智能的结合在提升人类健康方面具有革命性进展的潜力 | 探讨人工智能在代谢组学研究中的方法和应用 | 代谢组学数据及其在系统生物学和人类健康中的应用 | 代谢组学 | NA | 机器学习和深度学习 | NA | 代谢组学数据 | NA |
5760 | 2025-04-05 |
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction
2024-Apr-03, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad3327
PMID:38471184
|
research paper | 本研究开发了一种混合监督深度学习方法,用于解决质子声学成像中的有限视角问题,并实现高质量的3D剂量验证 | 提出了一种Recon-Enhance两阶段深度学习方法,结合了transformer网络和3D U-net,采用混合监督训练策略 | 研究仅在前列腺癌患者数据上进行验证,未在其他癌症类型中测试 | 解决质子声学成像中的有限视角问题,提高3D剂量验证的准确性和效率 | 质子声学成像的3D重建和剂量验证 | digital pathology | prostate cancer | protoacoustic imaging | transformer-based network, 3D U-net | acoustic signals, image | 126例前列腺癌患者数据 |