深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 23937 篇文献,本页显示第 5761 - 5780 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
5761 2025-03-01
Fluorescence excitation-scanning hyperspectral imaging with scalable 2D-3D deep learning framework for colorectal cancer detection
2024-06-26, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种新型的荧光激发扫描高光谱成像(HSI)方法,结合可扩展的2D-3D深度学习框架,用于结直肠癌的检测 开发了一种新型的荧光激发扫描HSI方法,结合可扩展的AI框架,实现了实时HSI分类和AI决策过程的可解释性 高维度的HSI数据集在数据处理、解释性和分类方面存在挑战 提高结直肠癌病变检测的敏感性和特异性 结直肠癌病变 计算机视觉 结直肠癌 荧光激发扫描高光谱成像(HSI) 深度学习模型 图像 NA
5762 2025-03-01
Deep Learning Phenotyping of Tricuspid Regurgitation for Automated High Throughput Assessment of Transthoracic Echocardiography
2024-Jun-24, medRxiv : the preprint server for health sciences
研究论文 本研究开发了一种自动化深度学习流程,用于从经胸超声心动图中评估三尖瓣反流(TR) 开发了一种自动化深度学习工作流程,用于高吞吐量评估三尖瓣反流,并在两个不同的医疗系统中进行了验证 研究依赖于特定医疗中心的数据,可能在其他医疗环境中的适用性需要进一步验证 开发并验证一种自动化深度学习模型,用于从超声心动图中评估三尖瓣反流的严重程度 经胸超声心动图视频 数字病理学 心血管疾病 深度学习 深度学习模型 视频 CSMC数据集包含47,312项研究(2,079,898个视频),测试集包含2,462项研究(108,138个视频);SHC数据集包含5,549项研究(278,377个视频)
5763 2025-03-01
Deep learning evaluation of echocardiograms to identify occult atrial fibrillation
2024-Apr-13, NPJ digital medicine IF:12.4Q1
研究论文 本研究开发了一种深度学习算法,通过分析经胸超声心动图(TTE)视频来识别隐匿性心房颤动(AF) 创新点在于使用两阶段深度学习算法,结合视频卷积神经网络模型,能够区分窦性心律和AF,并预测窦性心律患者中90天内发生AF的可能性 模型的预测性能在外部验证队列中有所下降,特别是在预测并发阵发性AF时,AUPRC较低(0.19-0.23) 研究目的是通过深度学习技术识别隐匿性AF,以促进早期治疗 研究对象为经胸超声心动图(TTE)视频 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 111,319个TTE视频用于训练,10,203个TTE视频用于外部验证
5764 2025-03-01
Automatic end-to-end VMAT treatment planning for rectal cancers
2024-Apr, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究开发并临床评估了一种用于直肠癌VMAT治疗的端到端自动分割和自动计划流程 首次将自动分割和自动计划结合用于直肠癌VMAT治疗的端到端流程,仅需肿瘤体积轮廓和CT扫描作为输入 大、小肠的分割具有挑战性,端到端流程的自动计划接受率有待提高 开发并评估直肠癌VMAT治疗的端到端自动分割和自动计划流程 直肠癌患者的CT扫描数据和临床靶区(CTV)轮廓 数字病理 直肠癌 VMAT(容积调强弧形治疗) nnU-Net CT图像 174名患者的CTV数据,18名患者的其他结构数据,20名患者的训练数据,34名患者的测试数据,16名患者的端到端流程评估数据
5765 2025-03-01
Prospective Evaluation of Automated Contouring for CT-Based Brachytherapy for Gynecologic Malignancies
2024-Apr, Advances in radiation oncology IF:2.2Q2
研究论文 本研究评估了自动轮廓绘制在基于计算机断层扫描的妇科恶性肿瘤近距离放射治疗计划中的准确性和效率 前瞻性地评估了自动轮廓绘制在临床实践中的应用,填补了该领域的研究空白 样本量相对较小,且仅在一个机构内进行,可能限制了结果的普适性 评估自动轮廓绘制在妇科恶性肿瘤近距离放射治疗计划中的临床实用性和准确性 妇科恶性肿瘤患者 数字病理 妇科恶性肿瘤 深度学习 NA CT图像 30例自动轮廓绘制病例和31例手动轮廓绘制病例
5766 2025-03-01
Deep learning for transesophageal echocardiography view classification
2024-01-02, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的多类别经食管超声心动图(TEE)视图分类模型,用于结构化术中和术中TEE成像数据 创新点在于开发了一个能够准确分类标准化TEE视图的深度学习模型,并进行了外部验证 研究的局限性在于仅使用了来自两个医疗中心的TEE视频数据进行训练和验证,样本来源较为单一 研究目的是通过深度学习技术对术中和术中TEE成像数据进行结构化分类 研究对象是术中和术中TEE视频数据 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 来自Cedars-Sinai Medical Center(CSMC)和Stanford University Medical Center(SUMC)的TEE视频数据
5767 2025-03-01
Commentary on "A systematic review on machine learning and deep learning techniques in cancer survival prediction": Validation of survival methods
2023-10, Progress in biophysics and molecular biology
NA NA NA NA NA NA NA NA NA NA NA NA
5768 2025-03-01
A deep learning-based electrocardiogram risk score for long term cardiovascular death and disease
2023-Sep-12, NPJ digital medicine IF:12.4Q1
研究论文 本文介绍了一种基于深度学习的静息心电图风险评分系统SEER,用于预测长期心血管死亡和疾病风险 开发了SEER,一种基于深度卷积神经网络的模型,仅通过静息心电图即可准确预测长期心血管死亡和疾病风险 研究主要基于斯坦福大学医学中心的数据,虽然在其他两个医疗中心进行了独立评估,但可能仍需更多样化的数据集验证其普适性 探索静息心电图在长期心血管风险评估中的应用,并开发一种新的风险评估工具 静息心电图数据 机器学习 心血管疾病 深度卷积神经网络 CNN 心电图数据 斯坦福大学医学中心收集的大量静息12导联心电图数据,并在Cedars-Sinai医疗中心和哥伦比亚大学欧文医学中心进行了独立评估
5769 2025-03-01
Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms
2023-05, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography IF:5.4Q1
研究论文 本研究利用深度学习模型,通过经胸超声心动图(TTE)视频预测冠状动脉钙化(CAC)评分,并评估其在预测1年生存率方面的效果 首次使用基于视频的卷积神经网络(CNN)从TTE视频中预测CAC评分,并验证其在外部数据集上的有效性 研究样本量相对较小,外部验证数据集仅有92个TTE视频 探索TTE视频是否可用于预测冠状动脉钙化评分,并评估其与CT CAC评分在预测1年生存率方面的相似性 2,881个TTE视频与冠状动脉钙化CT配对的样本,以及92个外部验证TTE视频 计算机视觉 心血管疾病 深度学习 卷积神经网络(CNN) 视频 2,881个TTE视频与CT配对的样本,以及92个外部验证TTE视频
5770 2025-03-01
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning
2022-04-01, JAMA cardiology IF:14.8Q1
研究论文 本研究评估了深度学习工作流程在量化心室肥厚和预测左心室壁增厚原因方面的准确性 开发了一种深度学习算法,能够自动、精确地测量左心室壁厚度并区分肥厚原因,如肥厚性心肌病和心脏淀粉样变性 研究依赖于回顾性数据,可能受到数据质量和完整性的限制 评估深度学习算法在心脏疾病诊断中的应用效果 左心室肥厚患者,特别是肥厚性心肌病和心脏淀粉样变性患者 数字病理 心血管疾病 深度学习 深度学习模型 视频(超声心动图) 23745名患者,包括来自Stanford Health Care和Cedars-Sinai Medical Center的患者
5771 2025-03-01
Using deep learning to study emotional behavior in rodent models
2022, Frontiers in behavioral neuroscience IF:2.6Q3
综述 本文探讨了深度学习技术在动物行为实验中的应用,特别是如何利用不同模型架构和训练范式来获取行为状态的表示 利用深度学习技术从视频中提取姿势信息,并通过监督、无监督和自监督方法获取行为状态的细微信息 未提及具体实验数据或样本量,可能缺乏实证支持 研究深度学习技术在量化动物情绪行为中的应用 啮齿类动物模型中的情绪行为 机器学习 NA 深度学习 监督、无监督、自监督模型 视频 NA
5772 2025-03-01
Systematic Quantification of Sources of Variation in Ejection Fraction Calculation Using Deep Learning
2021-11, JACC. Cardiovascular imaging
NA NA NA NA NA NA NA NA NA NA NA NA
5773 2025-02-28
Vision transformer-based multimodal fusion network for classification of tumor malignancy on breast ultrasound: A retrospective multicenter study
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本文提出了一种基于视觉Transformer的多模态融合网络,用于乳腺癌超声图像中肿瘤良恶性的分类 首次结合了影像组织学特征、深度学习特征和临床参数,开发了一种多模态特征融合模型 研究为回顾性研究,可能受到数据选择和偏倚的影响 开发一种多模态特征融合模型,用于预测乳腺肿瘤的良恶性 1065名患者的临床特征和3315个图像数据集 数字病理 乳腺癌 深度学习 Vision Transformer 图像和临床数据 1065名患者的临床特征和3315个图像数据集
5774 2025-02-28
Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本研究利用深度学习和电子健康记录(EHR)识别ANCA相关性血管炎(AAV)病例,提出了一种比传统方法更准确的病例识别模型 首次使用深度学习模型分析EHR数据来识别AAV病例,相比传统基于规则的方法,能够发现更多遗漏的病例 模型在测试队列中的阳性预测值(PPV)较低(0.262),可能影响其在实际应用中的可靠性 开发一种基于深度学习的模型,用于从电子健康记录中准确识别ANCA相关性血管炎(AAV)病例 电子健康记录(EHR)中的临床文档 自然语言处理 血管炎 深度学习 分层注意力网络(HAN) 文本 三个数据集分别包含6000、3008和7500个注释部分,测试队列包含2000个样本
5775 2025-02-28
Hip prosthesis failure prediction through radiological deep sequence learning
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本研究开发了基于多张连续X光片的人工智能模型,用于预测髋关节假体失败 首次结合时间序列和空间信息,利用多张连续X光片进行髋关节假体失败预测 外部验证集的样本量较小(14例患者),可能影响模型的泛化能力 开发基于多张连续X光片的人工智能模型,用于预测髋关节假体失败 224名患者的髋关节X光片序列 计算机视觉 骨科疾病 深度学习 CNN(卷积神经网络)与GRU(门控循环单元)或LSTM(长短期记忆网络)结合 X光片图像 224名患者的X光片序列,其中14名用于外部验证
5776 2025-02-28
Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本研究开发并验证了一个深度学习模型REDAPM,利用区域电子健康记录(EHR)数据预测2型糖尿病患者中的抑郁和焦虑 REDAPM模型首次整合了区域异构EHR数据,包括结构化和非结构化数据,捕捉临床事件的时间依赖性,显著提升了预测性能 研究依赖于特定区域(南京)的EHR数据,可能限制了模型的普适性 开发并验证一个深度学习模型,用于预测2型糖尿病患者中的抑郁和焦虑 2型糖尿病患者 机器学习 糖尿病 深度学习 REDAPM 电子健康记录(EHR)数据 内部验证数据集包含24,724名患者,外部验证数据集包含34,340名患者
5777 2025-02-03
A deep learning model for QRS delineation in organized rhythms during in-hospital cardiac arrest
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本文介绍了一种新的深度学习模型,用于在院内心脏骤停期间准确描绘有组织心律中的QRS复合波 提出了一种基于U-Net模型的深度学习方法,首次在心脏骤停心律中测试并准确描绘QRS复合波 未提及具体局限性 提高在院内心脏骤停期间QRS复合波的准确描绘,以支持临床诊断和治疗策略优化 院内心脏骤停患者和血流动力学稳定的患者 数字病理学 心血管疾病 深度学习 U-Net ECG信号 332次院内心脏骤停事件(151815个QRS复合波)和105名血流动力学稳定的患者(112497个QRS复合波)
5778 2025-02-28
Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis
2025-Apr, International journal of medical informatics IF:3.7Q2
meta-analysis 本文通过系统回顾和荟萃分析,评估了深度学习和机器学习在基于CT的慢性阻塞性肺疾病(COPD)诊断中的表现 首次对AI模型在COPD诊断中的表现进行了定量分析,并比较了深度学习和机器学习模型的诊断效能 研究间的异质性较高,且MIL机制对DL模型的性能提升未达到统计学显著性 评估AI模型在COPD诊断中的表现,并比较不同模型的诊断效能 COPD患者的CT图像 数字病理学 慢性阻塞性肺疾病 CT成像 深度学习(DL)、机器学习(ML)、多实例学习(MIL) 图像 22,817名患者
5779 2025-02-28
An interpretable hybrid machine learning approach for predicting three-month unfavorable outcomes in patients with acute ischemic stroke
2025-Apr, International journal of medical informatics IF:3.7Q2
研究论文 本研究旨在开发可解释的混合机器学习模型,以准确预测急性缺血性卒中患者三个月内的不良预后 结合了25种模型和14种评估指标进行聚类分析,最终选择了12种机器学习模型进行进一步分析,并通过SHAP图提供了特征重要性及其交互效应的可视化解释 研究依赖于现有的临床数据变量,可能无法涵盖所有影响预后的因素 开发可解释的混合机器学习模型,预测急性缺血性卒中患者三个月内的不良预后 急性缺血性卒中患者 机器学习 急性缺血性卒中 机器学习、深度学习 XGBoost、CatBoost 临床数据 731例训练数据,1045例内部验证数据,411例外部验证数据
5780 2025-02-28
Advanced deep learning techniques for recognition of dental implants
2025 Mar-Apr, Journal of oral biology and craniofacial research
研究论文 本研究评估了一种先进的深度学习技术DEtection TRanformer,用于识别牙科植入物 使用基于Transformer的深度学习技术DEtection TRanformer进行牙科植入物识别,这是一种新颖的应用 模型在未见过的验证数据上表现不佳,需要在准确性和效率之间进行优化 开发一种能够通过分析X光片图像来预测植入物类型的人工智能工具 牙科植入物 计算机视觉 NA 深度学习 DEtection TRanformer 图像 1138张图像,包含五种植入物类型,来自根尖和全景X光片
回到顶部