深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 40085 篇文献,本页显示第 5821 - 5840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
5821 2025-12-09
CellApop: A knowledge-guided decoupled distillation framework for label-efficient apoptotic cell segmentation and dynamic analysis in brightfield microscopy
2026-Feb-01, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于知识引导解耦蒸馏的深度学习框架CellApop,用于在明场显微镜图像中实现标签高效的凋亡细胞分割和动态分析 开发了知识引导解耦蒸馏框架,通过多个专家模型指导轻量级学生网络训练,显著减少手动标注需求约80%,并引入重参数化、深度可分离卷积和边缘感知模块以提升在细胞密集重叠和边界模糊等挑战条件下的分割精度 未明确说明模型在更广泛细胞类型或不同显微镜设置下的泛化能力,以及框架对计算资源的具体需求 实现无标记、实时的凋亡细胞检测,以克服传统荧光染色方法的局限性 明场显微镜图像中的凋亡细胞 数字病理学 NA 明场显微镜成像 深度学习分割模型 图像 16,472张明场细胞图像,来自三个公共数据集(BF-C2DL-MuSC、DICC2DHHeLa、LiveCell)和一个专有凋亡数据集 未明确指定,但基于深度学习框架 CellApop(轻量级学生网络,包含重参数化、深度可分离卷积和边缘感知模块) Dice相似系数、Hausdorff距离、IoU、灵敏度、特异性 NA
5822 2025-12-09
Explainable multimodal fusion for breast carcinoma diagnosis: A systematic review, open problems, and future directions
2026-Feb-01, Computer methods and programs in biomedicine IF:4.9Q1
系统综述 本文系统综述了2015年至2025年间发表的49项关于可解释多模态融合在乳腺癌诊断与预后中的应用研究 首次系统性地梳理了乳腺癌诊断中多模态学习与可解释人工智能(XAI)的研究现状、融合策略及开放性问题 纳入研究存在数据集可用性有限、基准测试不一致、真实世界可解释模型稀缺等普遍问题 分析多模态融合与可解释人工智能在乳腺癌诊断和预后中的应用现状、挑战及未来方向 乳腺癌(BC) 数字病理学 乳腺癌 多模态数据融合(影像、临床记录、组织病理学、基因组数据) Transformer, GNN, Autoencoder, 集成学习 影像、文本、基因组数据 NA NA 注意力机制、门控架构、混合架构 NA NA
5823 2025-12-09
MRomicsNet: A morphomics-radiomics-driven adaptive topological model for AD diagnosis on clinically routine T1-weighted images
2026-Feb-01, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究提出了一种基于形态组学和影像组学的自适应拓扑模型(MRomicsNet),用于在临床常规T1加权图像上进行阿尔茨海默病诊断 首次将形态组学和影像组学特征整合到一个自适应拓扑模型中,通过深度学习框架强化重要脑区间连接并抑制无关连接,以优化脑网络构建 研究主要依赖于特定数据集(ADNI和EDSD),未在更广泛或多样化临床数据上进行验证,且模型复杂度可能较高 开发一种结合形态组学和影像组学优势的自适应拓扑模型,以提升基于T1加权图像的阿尔茨海默病诊断准确性 阿尔茨海默病患者及健康对照者的脑部T1加权图像 数字病理学 阿尔茨海默病 T1加权磁共振成像 图卷积网络 图像 ADNI和EDSD数据集,具体样本数量未在摘要中明确说明 深度学习框架(具体未指定,可能为PyTorch或TensorFlow) MRomicsNet(包含morphGCN通道和mrGCN通道) 诊断准确率 NA
5824 2025-12-09
GICAF-Net: A cross-attentional graph-image fusion network for hyperspectral pathological diagnosis of FNH and HCC
2026-Feb-01, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究提出了一种名为GICAF-Net的图-图像交叉注意力融合网络,用于肝局灶性结节性增生(FNH)和肝细胞癌(HCC)的高光谱病理诊断 提出了一种新颖的双分支网络架构,结合了残差卷积和残差图卷积,并引入了拓扑感知交叉注意力融合模块(TACA)以及结合交叉熵、预测置信度和跨模态注意力一致性的多约束融合损失函数,以增强跨模态信息融合和分类稳定性 研究样本量相对较小(共120例),且未在更广泛的外部数据集上进行验证 提高肝肿瘤(FNH与HCC)术中高光谱病理诊断的准确性和效率 肝局灶性结节性增生(FNH)和肝细胞癌(HCC)的病理样本 数字病理 肝癌 高光谱成像 CNN, GCN 高光谱图像 包含60例HCC和60例FNH的平衡高光谱肝肿瘤数据集,共120例 NA GICAF-Net, 残差卷积, 残差图卷积 AUC, 准确率, F1分数 NA
5825 2025-12-09
Quantitative analysis of corn adulteration in sweet potato starch using a CNN-LSTM hybrid model
2026-Jan-01, Food chemistry IF:8.5Q1
研究论文 本文利用太赫兹时域光谱技术结合CNN-LSTM混合模型,实现了对红薯淀粉中玉米掺假的快速定量分析 首次将CNN-LSTM混合深度学习模型应用于太赫兹光谱数据,用于淀粉掺假的定量检测,相比传统回归方法具有更高精度 未提及模型在其他淀粉类型或更复杂掺假场景中的泛化能力,且样本规模和多样性可能有限 开发一种快速、准确、非破坏性的淀粉掺假定量检测方法 掺假的红薯淀粉样品(含有玉米淀粉) 机器学习 NA 太赫兹时域光谱技术 CNN, LSTM 光谱数据(时域光谱) 一系列掺假样品(具体数量未明确说明) NA CNN-LSTM混合模型 Rp(预测相关系数), RMSEP(预测均方根误差) NA
5826 2025-12-09
Deep Learning HASTE for Upper Abdominal MRI: Improved Image Quality, Speed, and Energy Efficiency in a Prospective Study
2026-Jan, NMR in biomedicine IF:2.7Q1
研究论文 本研究前瞻性地比较了深度学习重建的快速T2加权HASTE序列与传统HASTE序列在上腹部3T MRI中的图像质量、扫描时间和能效 首次将深度学习重建技术应用于上腹部MRI的HASTE序列,在保证图像质量的同时实现了62.5%的扫描时间缩减和显著的能耗降低 研究为单中心前瞻性研究,样本量相对有限(166例),且仅针对上腹部MRI,未评估其他解剖区域 评估深度学习重建的快速HASTE序列在上腹部MRI中的图像质量、诊断性能和能效优势 166名计划接受上腹部MRI检查的患者(平均年龄60±14岁) 医学影像分析 上腹部疾病 3T MRI, T2加权HASTE序列 深度学习模型 MRI图像 166例患者 未明确说明 未明确说明 图像质量评分, SNR, CNR, 放射组学特征, 扫描时间, 能耗 未明确说明
5827 2025-12-09
Association of deep learning-derived optic nerve morphology with Parkinson's disease and drug-induced Parkinsonism: Findings from the LIFE Study
2025-Dec-15, Journal of the neurological sciences IF:3.6Q2
研究论文 本研究通过深度学习分析眼底照片中的视盘杯盘比,探讨其与帕金森病及药物诱导性帕金森综合征的关联 首次在大规模人群研究中,利用深度学习从眼底照片中提取视盘杯盘比,并评估其与帕金森病及药物诱导性帕金森综合征的关联 研究为横断面设计,无法确定因果关系;仅基于ICD-10编码和处方记录诊断疾病,可能存在误分类;未详细说明深度学习模型的具体架构和性能 探究视盘杯盘比作为神经退行性病变标志物,与帕金森病及药物诱导性帕金森综合征的关联 来自日本LIFE研究的14,280名40-64岁社区参与者 数字病理学 帕金森病 眼底摄影 深度学习 图像 14,280名参与者 NA NA NA NA
5828 2025-12-09
Copolymer Sequence Regulation Enabled by Reactivity Ratio Fingerprints via Machine Learning
2025-Dec-08, Angewandte Chemie (International ed. in English)
研究论文 本研究开发了一个基于机器学习的高效平台,利用“反应活性比指纹”来测定二元和三元共聚中的反应活性比,实现序列调控 提出了“反应活性比指纹”的新设计,并利用深度学习模型在稀疏实验数据下实现毫秒级的高效测定,扩展至三元共聚体系 未明确说明模型在极端反应条件或非常规单体组合下的泛化能力 开发高效测定共聚反应活性比的方法,实现聚合物序列的按需调控 二元和三元共聚反应体系 机器学习 NA 共聚反应动力学分析,玻璃化转变表征 深度学习模型 反应活性比指纹,实验数据 数百万个反应活性比指纹 NA NA 测定效率(毫秒级),预测准确性(通过动力学实验验证) NA
5829 2025-12-09
SleepPPG-Net2: deep learning generalization for sleep staging from photoplethysmography
2025-Dec-08, Physiological measurement IF:2.3Q3
研究论文 本研究提出SleepPPG-Net2模型,通过多源域训练提升基于光电容积脉搏波(PPG)的四阶段睡眠分期在外部数据集上的泛化性能 采用多源域训练策略解决PPG数据漂移问题,显著提升模型在分布外数据上的泛化能力(Cohen's kappa提升达21%) 模型性能仍受年龄、性别和阻塞性睡眠呼吸暂停严重程度等人口统计学和临床因素影响 改善基于PPG信号的自动睡眠分期模型的跨数据集泛化能力 原始PPG时间序列数据 机器学习 睡眠障碍 光电容积脉搏波(PPG) 深度学习模型 时间序列数据 NA NA SleepPPG-Net2 Cohen's kappa NA
5830 2025-12-09
From Signal to Symphony: Exploring 2D Sequence Representations for Protein Function Prediction
2025-Dec-08, Journal of chemical information and modeling IF:5.6Q1
研究论文 本研究探索了将蛋白质氨基酸序列转换为二维声谱图作为蛋白质功能预测任务的数据表示方法 提出蛋白质声谱化方法,将一维序列转换为二维声谱图,并证明这种表示结构本身是模型预测性能的关键来源 未明确说明模型在更广泛蛋白质类别或更大规模数据集上的泛化能力限制 探索蛋白质序列的最佳表示方法以提高功能预测性能 蛋白质氨基酸序列 计算生物学 NA 蛋白质声谱化 融合模型, 扩散模型 序列, 图像 18,000个序列,涵盖12个功能多样的蛋白质类别 NA Transformer, ESM-2, ProtBERT 准确率 NA
5831 2025-12-09
MGCL-CAP: Masked Graph Contrastive Learning with Gated Cross-Attention for Chemical Allergenicity Prediction
2025-Dec-08, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文提出了一种名为MGCL-CAP的深度学习框架,用于化学致敏性预测,该框架结合了掩码图对比学习和门控交叉注意力融合技术 提出了一种结合掩码图对比学习和门控交叉注意力融合的深度学习框架,用于学习结构不变的图嵌入并整合一维分子指纹,从而提升对分子拓扑和跨模态依赖关系的捕捉能力 未明确提及具体的数据集规模限制或模型在极端噪声条件下的鲁棒性 开发一种计算工具,用于高效预测化学物质的致敏性,以支持化学安全评估和更安全的配方设计 化学致敏物(存在于消费品和工业产品中) 机器学习 过敏性疾病 深度学习 图神经网络, 注意力机制 图数据(分子结构), 一维分子指纹 NA NA 图同构网络, 多头门控交叉注意力 NA NA
5832 2025-12-09
Automatic detection of urinary stones from non-contrast enhanced computed tomography images
2025-Dec-08, Urolithiasis IF:2.0Q2
研究论文 本研究利用深度学习技术,开发了名为UROAID的集成模型,用于从非增强CT图像中自动检测尿路结石 提出了UROAID集成模型,结合了基于分割的结石检测模块和结石分类模块,模拟放射科医生诊断尿路结石的流程,并针对不同位置的结石实现了高检测率 未明确提及模型在外部验证集上的泛化能力,也未讨论计算效率或实时性方面的限制 实现尿路结石的自动检测,以辅助急诊诊断 成年患者的非增强腹部盆腔CT图像 数字病理学 尿路结石 非增强计算机断层扫描(CT) 深度学习,集成模型 3D CT图像 6659名患者的CT扫描 NA Uro-UNETR(改进版),UROAID 准确率,F1分数,检测率 NA
5833 2025-12-09
Establishment of CT diagnostic reference levels (DRLs) in Tokyo
2025-Dec-08, European radiology IF:4.7Q1
研究论文 本研究旨在调查东京地区医疗设施特征和CT扫描仪性能如何影响诊断参考水平,以优化CT检查中的辐射剂量 首次在东京地区建立基于设施特征和扫描仪性能的详细诊断参考水平,并系统评估了多种影响因素,如放射科医生、认证技师、医院规模、扫描仪规格和图像重建方法 双能CT的数据有限,仅针对对比增强肺动脉扫描建立了诊断参考水平,且样本仅来自东京地区,可能无法代表其他地区 优化CT检查中的辐射剂量,提高患者安全性,同时不损害诊断质量 东京地区的医疗设施、CT扫描仪以及接受常见CT检查方案的成年患者(50-70公斤) 医学影像 NA CT扫描、剂量调查、统计分析 NA 剂量数据(CTDIvol、DLP)、设施特征数据 100个医疗设施、176台CT扫描仪 NA NA 75th百分位数(定义为东京诊断参考水平) NA
5834 2025-12-09
Technical Review of Magnetic Resonance Fingerprinting Applications in Cerebral Physiology
2025-Dec-07, Magnetic resonance in medicine IF:3.0Q2
综述 本文综述了磁共振指纹技术在大脑生理学中的应用,重点介绍了血管成像的进展和生物物理模型的整合 通过创新的采集和计算方法,MRF实现了多组织特性的同时映射,并整合了机器学习以提升字典匹配和实时参数估计的准确性与可靠性 面临低信噪比和高计算需求的挑战 评估MRF技术在大脑生理学中的应用潜力,特别是在血管成像和临床转化方面 大脑生理学,包括血管成像、血流动力学参数和血管相关参数 数字病理学 脑血管疾病 磁共振指纹技术 深度学习 磁共振图像 NA NA NA 准确性 NA
5835 2025-12-09
Boosting brain tumor detection with an optimized ResNet and explainability via Grad-CAM and LIME
2025-Dec-05, Brain informatics
研究论文 本研究通过优化ResNet架构并集成Grad-CAM和LIME等可解释性技术,提升脑肿瘤检测的准确性、泛化性和可解释性 结合动态学习率调整、架构增强(如解冻层、集成不同模块、池化和丢弃层)与可解释性AI技术,在提升模型性能的同时解决CNN在医学影像中缺乏可解释性的问题 研究依赖于公开的多类别肿瘤数据集,未在更广泛或临床实时数据上进行验证;虽然使用了三个数据集以确保泛化性,但可能仍存在特定数据分布的偏差 提高基于CNN的脑肿瘤检测模型的准确性、泛化性和临床可解释性 脑肿瘤的MRI影像 计算机视觉 脑肿瘤 MRI影像分析 CNN 图像 三个公开的多类别脑肿瘤数据集 未明确提及,推测为PyTorch或TensorFlow ResNet 准确率 NA
5836 2025-12-09
T-SCAPE: T cell immunogenicity scoring via cross-domain aided predictive engine
2025-Dec-05, Science advances IF:11.7Q1
研究论文 本文提出了一种名为T-SCAPE的新型多领域深度学习框架,用于预测T细胞免疫原性 利用对抗性领域适应整合多种免疫相关数据源,实现跨领域预测,无需MHC输入即可预测治疗性抗体的抗药抗体诱导潜力 NA 预测T细胞免疫原性以促进更安全有效的疫苗和蛋白质治疗剂的开发 肽片段、肽-MHC对、治疗性抗体 机器学习 NA 深度学习、对抗性领域适应 深度学习框架 免疫相关数据(MHC呈递、pMHC结合亲和力、T细胞受体-pMHC相互作用、来源生物信息、T细胞激活) NA NA NA NA NA
5837 2025-12-09
Deep learning predicts real-world electric vehicle direct current charging profiles and durations
2025-Dec-05, Nature communications IF:14.7Q1
研究论文 本文提出了一种基于深度学习的框架,用于预测电动汽车直流快速充电的充电曲线和持续时间 利用真实世界的大规模充电会话数据(909,135个会话),仅需最少输入即可预测充电曲线和持续时间,并提供不确定性估计;模型能够从单个数据点开始预测,并随着新观测数据的到来进行增量式实时更新 未明确说明模型在不同气候条件、电池老化或极端充电场景下的泛化能力 准确预测电动汽车直流快速充电的充电曲线和持续时间,以支持充电基础设施的优化和能源规划 电动汽车的直流快速充电会话 机器学习 NA 深度学习 深度学习模型 时间序列数据(充电功率、荷电状态) 909,135个真实世界充电会话 未明确指定 未明确指定 准确率、绝对误差 未明确指定
5838 2025-12-09
Early detection of Alzheimer's disease progression: comparative evaluation of deep learning models
2025-Dec-05, Scientific reports IF:3.8Q1
研究论文 本研究评估了两种3D卷积神经网络模型在基于脑部MRI进行阿尔茨海默病进展二元分类中的表现 比较了全体积处理与基于神经解剖学区域特征提取的两种CNN方法,后者利用特定脑区灰质体积差异提升性能 研究结果仅基于ADNI数据集,需要在更广泛的临床人群中进行验证 通过深度学习模型提高阿尔茨海默病进展的早期检测和监测精度 阿尔茨海默病患者的脑部MRI数据 计算机视觉 阿尔茨海默病 MRI神经影像生物标志物分析 CNN 3D MRI图像 NA NA 3D CNN 准确率 NA
5839 2025-12-06
Spike train analysis in rehabilitation movement classification using deep learning approach
2025-Dec-04, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
5840 2025-12-09
Characterizing and Evaluating Mental Health Misinformation on Social Media: A Qualitative and Deep Learning-Based Study
2025-Dec-04, Cyberpsychology, behavior and social networking
研究论文 本研究提出了一种结合定性分析和深度学习的集成框架,用于自动检测和评估社交媒体上的心理健康错误信息 通过专家访谈和扎根理论,开发了一个包含七个维度的21级细粒度可信度评估框架,并构建了高质量的中文社交媒体数据集 所有三个模型在评估证据质量和检测上下文依赖的错误信息方面面临挑战 自动检测和评估社交媒体上的心理健康错误信息,以提高在线心理健康信息的可信度 中文社交媒体帖子 自然语言处理 心理健康 NA GRU, BERT, RoBERTa 文本 814个中文社交媒体帖子 NA GRU, BERT, RoBERTa NA NA
回到顶部