本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5921 | 2025-04-08 |
Optimal selection of a probabilistic machine learning model for predicting high run chase outcomes in T-20 international cricket
2025-Apr-07, Journal of sports sciences
IF:2.3Q2
DOI:10.1080/02640414.2025.2488157
PMID:40192186
|
研究论文 | 本研究评估了多种概率机器学习模型在预测T20国际板球比赛中高得分追逐结果的有效性 | 首次系统地比较了多种贝叶斯概率模型在板球高得分追逐预测中的表现,并确定CAWNB模型为最优选择 | 研究仅限于T20板球比赛,未考虑其他板球赛制,且未探索混合贝叶斯深度学习方法 | 评估不同概率机器学习模型在板球高得分追逐预测中的性能 | T20国际板球比赛中的高得分追逐情景 | 机器学习 | NA | 蒙特卡洛模拟,非参数统计检验 | Naïve Bayes, Bayesian Network, BRNN, HNB, CFWNB, CAWNB | 比赛数据 | NA |
5922 | 2025-04-08 |
Skull CT metadata for automatic bone age assessment by using three-dimensional deep learning framework
2025-Apr-07, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-025-03469-3
PMID:40192774
|
研究论文 | 本研究开发了一种基于三维深度学习框架的头骨CT元数据自动骨龄评估方法,并探索了新的头骨标记物 | 提出了一种新的三维深度学习框架,用于头骨CT元数据的骨龄评估,并探索了新的头骨标记物 | 模型在老年组中表现出较大的误差 | 开发一种准确的三维深度学习框架,用于头骨CT元数据的骨龄评估 | 头骨CT元数据 | 计算机视觉 | NA | CT扫描 | 三维深度学习框架 | 图像 | 1,085名患者(385,175个头骨CT切片),外加101名患者作为外部验证集 |
5923 | 2025-04-08 |
Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses
2025-Apr-07, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-025-01755-z
PMID:40193009
|
研究论文 | 比较标准512矩阵、标准1024矩阵和基于Swin2SR的2048矩阵幻影图像在不同扫描协议下的质量 | 使用Swin2SR超分辨率模型生成2048矩阵图像,相比标准512和1024矩阵图像,提高了空间分辨率并降低了图像噪声 | 研究仅基于Catphan 600幻影,未涉及真实患者数据 | 评估Transformer增强的2048矩阵CT图像在低剂量和超低剂量下的图像质量 | Catphan 600幻影 | 医学影像 | NA | 多排CT扫描、超分辨率重建 | Swin2SR、SRCNN | CT图像 | Catphan 600幻影 |
5924 | 2025-04-08 |
Hybrid Electromagnetic-Triboelectric Hip Energy Harvester for Wearables and AI-Assisted Motion Monitoring
2025-Apr-06, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202500643
PMID:40190045
|
研究论文 | 介绍了一种AI辅助的可穿戴髋关节能量收集器(HJEH),用于将髋关节运动的机械能转化为电能并监测人体运动 | 结合电磁发电机(EMG)和独立式摩擦电纳米发电机(FS-TENG)实现能量收集和运动传感,并利用深度学习算法处理信号以提高运动检测准确性 | NA | 开发一种可穿戴设备,用于能量收集和人体运动监测 | 髋关节运动和人体运动监测 | 可穿戴技术 | 老年疾病 | 电磁发电机(EMG)、独立式摩擦电纳米发电机(FS-TENG)、深度学习算法 | 深度学习 | 运动信号 | NA |
5925 | 2025-04-08 |
Optimization on multifractal loss landscapes explains a diverse range of geometrical and dynamical properties of deep learning
2025-Apr-05, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-58532-9
PMID:40185730
|
research paper | 该论文提出了一个理论框架,将深度学习中的损失景观复杂性建模为多重分形,以解释优化器在复杂景观中导航的能力 | 引入多重分形模型统一解释损失景观的几何特征和优化动力学,提出分数扩散理论说明优化过程如何引导向平滑解空间 | 未提及具体实验验证或实际应用案例 | 理解深度学习优化器在复杂损失景观中的动态导航机制 | 深度学习中的损失景观和优化过程 | machine learning | NA | NA | deep neural networks | NA | NA |
5926 | 2025-04-08 |
CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study
2025-Apr-05, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01952-4
PMID:40185919
|
research paper | 该研究开发并验证了基于CT的放射组学深度学习特征,用于无创预测嗜铬细胞瘤和副神经节瘤的转移潜能 | 结合放射组学特征和深度学习模型(ResNet),构建了一个能够术前预测PPGL转移潜能的组合模型 | 研究为回顾性分析,样本量相对有限(249例患者) | 开发非侵入性预测嗜铬细胞瘤和副神经节瘤转移潜能的方法 | 嗜铬细胞瘤和副神经节瘤(PPGL)患者 | digital pathology | pheochromocytoma and paraganglioma | CT imaging, radiomics, deep learning | SVM, ResNet-50 | CT images | 249例PPGL患者(训练集138例,测试集1 71例,测试集2 40例) |
5927 | 2025-04-08 |
Short-Term Residential Load Forecasting Framework Based on Spatial-Temporal Fusion Adaptive Gated Graph Convolution Networks
2025-Apr-04, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3551778
PMID:40184286
|
研究论文 | 提出了一种基于时空融合自适应门控图卷积网络的短期住宅负荷预测框架 | 引入了时空融合图构建和创新的门控自适应融合图卷积机制,动态建模时空相关性 | 未提及具体的数据集规模或实际应用中的潜在限制 | 提高现代电网中波动性和间歇性电力负荷的预测准确性 | 住宅短期电力负荷 | 机器学习 | NA | 时空融合图卷积网络(STFGCN)、门控时间卷积网络(Gated TCN) | STFAG-GCNs | 时空数据 | NA |
5928 | 2025-04-08 |
Parallel boosting neural network with mutual information for day-ahead solar irradiance forecasting
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95891-1
PMID:40185800
|
research paper | 提出了一种新颖的并行提升神经网络框架(PBNN),用于日前太阳辐照度预测,结合了提升算法和前馈神经网络 | 提出了一种新的并行提升神经网络框架(PBNN),结合了三种提升决策树算法(XgBoost、CatBoost和RF回归器)作为基础学习器,并通过前馈神经网络(FFNN)分配最优权重以生成最终预测 | 虽然PBNN在性能上有所提升,但其计算复杂度可能仍然较高,且依赖于特征选择算法的准确性 | 提高日前太阳辐照度预测的准确性,以支持光伏系统的可靠运行 | 太阳辐照度数据 | machine learning | NA | 并行提升神经网络(PBNN)、互信息(MI)算法 | PBNN、XgBoost、CatBoost、RF、FFNN | 太阳辐照度数据 | 两个地理数据集(伊斯兰堡和圣地亚哥) |
5929 | 2025-04-08 |
Improved deep learning model for accurate energy demand prediction and conservation in electric vehicles integrated with cognitive radio networks
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-94650-6
PMID:40185809
|
research paper | 提出了一种改进的深度学习模型,用于准确预测电动汽车与认知无线电网络整合中的能源需求并实现节能 | 结合经验模态分解、CNN和海鸥优化算法(EMD-CNN-SOA),提高了能源需求预测的准确性 | 未提及具体的数据集来源或实验环境限制 | 解决电动汽车能源需求预测和节能问题,减轻电网负担并降低充电成本 | 电动汽车和认知无线电网络 | machine learning | NA | Empirical Mode Decomposition, Seagull Optimization Algorithm | EMD-CNN-SOA, CNN, LSTM, RNN | NA | NA |
5930 | 2025-04-08 |
A performance-driven hybrid text-image classification model for multimodal data
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95674-8
PMID:40185890
|
research paper | 本文提出了一种结合文本和图像处理的混合模型HTIC,用于多模态数据的分类任务 | HTIC模型采用复杂的深度学习架构,结合VGG16进行图像分类和Roberta与MYSQL进行文本分类,通过多模态特征提取层确保不同类型数据的兼容性 | 未明确提及具体局限性 | 提高多模态数据分类的准确性、可解释性和应用性 | 多模态数据(文本和图像) | machine learning | NA | 深度学习、多模态特征提取 | HTIC(混合文本图像分类模型)、VGG16、Roberta、CNN | 文本、图像 | 五个不同的数据集(包括NFT数据集) |
5931 | 2025-04-08 |
Tunnel face rock mass class rapid identification based on TBM cutterhead vibration monitoring and deep learning model
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96875-x
PMID:40186002
|
研究论文 | 基于TBM刀盘振动监测和深度学习模型,开发了一种端到端的隧道工作面岩体等级快速识别方法 | 结合1DCNN、BiLSTM和自注意力机制的优势,提出了一种新的深度学习模型,能够自动提取信号中的时空域特征,无需中断正常掘进过程即可快速识别岩体等级 | 缺乏对长隧道段连续振动记录的获取,且对TBM刀盘振动监测的研究较少 | 优化TBM操作参数和选择后续隧道支护措施 | TBM隧道工作面的岩体条件 | 机器学习 | NA | 深度学习 | 1DCNN, BiLSTM, 自注意力机制 | 振动信号 | NA |
5932 | 2025-04-08 |
Compact Model Training by Low-Rank Projection With Energy Transfer
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3400928
PMID:38843062
|
研究论文 | 提出了一种名为LRPET的新训练方法,用于从头开始训练低秩压缩网络,并实现竞争性性能 | 通过交替执行随机梯度下降训练和权重矩阵的低秩流形投影,并结合能量转移和BN校正,提高了低秩压缩网络的性能 | 未明确提及具体限制,但可能包括对特定网络架构的依赖或计算资源需求 | 开发一种高效的深度神经网络低秩压缩方法 | 深度神经网络 | 机器学习 | NA | 低秩投影与能量转移(LRPET) | CNN, Transformer | 图像 | CIFAR-10和ImageNet数据集 |
5933 | 2025-04-08 |
Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3386809
PMID:38722728
|
研究论文 | 提出了一种监督辅助的自监督深度学习方法,用于高光谱图像(HSI)的恢复 | 结合监督学习和自监督学习,引入噪声自适应损失函数,利用噪声退化HSI的内部统计信息进行恢复 | 未明确提及具体限制,但可能面临复杂噪声场景下的泛化能力挑战 | 解决高光谱图像恢复中的分布差距和噪声干扰问题 | 高光谱图像(HSI) | 计算机视觉 | NA | 深度学习 | 监督辅助的自监督深度学习网络 | 高光谱图像 | 未明确提及具体样本数量,但使用了大量训练数据集 |
5934 | 2025-04-08 |
Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17580
PMID:39699250
|
研究论文 | 本研究探讨了利用患者特异性自动分割方法改进腹部癌症患者在分次磁共振引导放疗中的自动分割效果 | 提出了基于患者特异性数据的自动分割模型,通过整合治疗计划和先前分次的MR图像,优化了分次治疗中的自动分割效果 | 研究样本量有限(151名患者),且仅针对特定类型的腹部癌症 | 改进分次磁共振引导放疗中的自动分割方法,以减少手动轮廓校正的时间消耗 | 腹部癌症患者的分次磁共振引导放疗数据 | 数字病理 | 腹部癌症 | 磁共振成像(MRI) | 深度学习自动分割模型 | 图像 | 151名腹部癌症患者的151份计划MR图像和215份分次MR图像 |
5935 | 2025-04-08 |
Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17651
PMID:39887750
|
research paper | 评估深度学习图像重建(DLIR)在双能CT(DECT)中对图像质量和肝血管性病变检测的影响 | 首次在DECT中使用DLIR算法评估其对肝血管性病变检测的影响,并与传统重建方法进行比较 | 研究基于人体模型,未涉及真实患者数据,可能无法完全反映临床情况 | 评估DLIR在DECT中对图像质量和肝血管性病变检测的影响 | 模拟的肝血管性肝细胞癌(HCC)病变 | digital pathology | liver cancer | dual-energy CT (DECT), deep learning image reconstruction (DLIR) | DLIR | CT image | 一个人体模型(BMI为23 kg/m²),包含模拟的肝血管性病变 |
5936 | 2025-04-08 |
Multiscale Deep Learning for Detection and Recognition: A Comprehensive Survey
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3389454
PMID:38652624
|
综述 | 本文全面介绍了多尺度深度学习在目标检测和识别中的发展,构建了一个易于理解且强大的知识结构 | 综合介绍了多尺度深度学习的理论和方法,包括金字塔表示、尺度空间表示和多尺度几何表示,并比较了不同多尺度结构设计的性能 | 指出了多尺度深度学习中存在的几个开放问题和未来方向,但未提出具体的解决方案 | 探讨计算机视觉中的多尺度问题,特别是目标检测和识别中的多尺度表示 | 多尺度深度学习的理论和方法 | 计算机视觉 | NA | NA | CNN, Vision Transformers (ViTs) | 图像 | NA |
5937 | 2025-04-08 |
Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study
2025-Mar-31, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2025.102324
PMID:40174752
|
研究论文 | 本研究评估了基于深度学习的多模态CT/MRI图像融合和分割策略在口腔颌面部肿瘤手术规划中的可行性和准确性 | 结合了三种融合模型和三种分割模型,生成了九种混合深度学习模型,并评估了它们在口腔颌面部肿瘤分割中的性能 | 样本量较小(30例患者),且为单中心研究,可能影响结果的普遍性 | 评估深度学习在多模态CT/MRI图像融合和分割中的应用,为口腔颌面部肿瘤的虚拟手术规划提供基础 | 30名口腔颌面部肿瘤患者 | 数字病理 | 口腔颌面部肿瘤 | CT/MRI扫描 | Elastix, ANTs, NiftyReg, nnU-Net, 3D UX-Net, U-Net | 医学影像(CT/MRI) | 30名口腔颌面部肿瘤患者 |
5938 | 2025-04-08 |
A Deep Learning Model of Histologic Tumor Differentiation as a Prognostic Tool in Hepatocellular Carcinoma
2025-Mar-12, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2025.100747
PMID:40086592
|
研究论文 | 本研究开发了一种基于深度学习的AI模型,用于量化肝细胞癌(HCC)肿瘤分化的组织学特征并预测癌症相关结果 | 首次使用AI模型量化HCC肿瘤分化的多个组织学特征,并证明其在预测HCC相关预后方面的优越性 | 研究样本量较小(99例HCC切除标本),需要更大样本验证 | 评估AI模型在量化HCC肿瘤分化特征和预测癌症相关结果方面的性能 | 肝细胞癌(HCC)切除标本 | 数字病理学 | 肝细胞癌 | 深度学习 | 监督学习AI模型 | 组织学图像 | 99例HCC切除标本 |
5939 | 2025-04-08 |
Predictive models for posttransplant diabetes mellitus in kidney transplant recipients using machine learning and deep learning approach: a nationwide cohort study from South Korea
2025-01-09, Kidney research and clinical practice
IF:2.9Q1
DOI:10.23876/j.krcp.24.113
PMID:40176402
|
研究论文 | 本研究利用机器学习和深度学习方法预测肾移植受者术后糖尿病(PTDM)的风险 | 首次在全国性队列研究中应用多种机器学习和深度学习模型预测PTDM,并比较其性能 | 研究仅基于韩国器官移植注册数据,可能不适用于其他人群 | 预测肾移植受者术后糖尿病的风险 | 肾移植受者 | 机器学习 | 糖尿病 | 机器学习、深度学习 | XGBoost, CatBoost, light gradient boosting machine, logistic regression | 临床数据 | 3,213名肾移植受者 |
5940 | 2025-04-08 |
Synthetic temporal bone CT generation from UTE-MRI using a cycleGAN-based deep learning model: advancing beyond CT-MR imaging fusion
2025-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10967-2
PMID:39026063
|
研究论文 | 本研究开发了一种基于CycleGAN的深度学习模型,用于从超短回波时间磁共振成像(MRI)扫描生成合成颞骨计算机断层扫描(CT)图像 | 使用CycleGAN模型从MRI生成合成CT图像,解决了MRI在颞骨解剖标志定位上的固有局限性 | 对于五个主要解剖结构的生成成功率较低(24%至83%) | 开发一种深度学习模型,以生成合成颞骨CT图像,克服MRI在颞骨解剖标志定位上的局限性 | 颞骨MRI和CT图像 | 数字病理学 | NA | 点状编码时间减少与径向采集(PETRA)MRI | CycleGAN | 图像 | 102名患者(训练数据集54名,验证数据集48名) |