本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5941 | 2025-04-25 |
Unsupervised Non-Rigid Histological Image Registration Guided by Keypoint Correspondences Based on Learnable Deep Features With Iterative Training
2025-Jan, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3447214
PMID:39167523
|
research paper | 提出了一种基于可学习深度特征和迭代训练的无监督非刚性组织学图像配准方法 | 引入了固定深度特征和可学习深度特征作为关键点描述符,采用迭代训练策略联合优化配准网络和可学习深度特征 | 未明确提及具体局限性 | 解决组织学图像配准中由于多重染色导致的显著外观差异问题 | 组织学图像 | digital pathology | breast cancer | deep learning | unsupervised network | image | ANHIR和ACROBAT网站上的数据集 |
5942 | 2025-04-25 |
Artificial Intelligence Recognition Model Using Liquid-Based Cytology Images to Discriminate Malignancy and Histological Types of Non-Small-Cell Lung Cancer
2025, Pathobiology : journal of immunopathology, molecular and cellular biology
IF:3.5Q1
DOI:10.1159/000541148
PMID:39197433
|
研究论文 | 本研究开发了一种基于深度学习的自动化图像分类模型,用于通过液基细胞学图像识别非小细胞肺癌的恶性肿瘤和组织学类型 | 使用Densenet-121 DCNN模型对肺癌细胞学图像进行分类,实现了高灵敏度和特异性的恶性肿瘤和组织学类型预测 | 样本量相对较小,且仅包含腺癌和鳞状细胞癌两种组织学类型 | 开发一种自动化图像分类模型,用于肺癌细胞学诊断 | 非小细胞肺癌的液基细胞学图像 | 数字病理学 | 肺癌 | 全切片成像 | Densenet-121 DCNN | 图像 | 45张巴氏染色玻片,共9141个图像块(2737个正常组织,4756个腺癌,1648个鳞状细胞癌) |
5943 | 2025-04-25 |
Accelerated T2-weighted MRI of the Bowel at 3T Using a Single-shot Technique with Deep Learning-based Image Reconstruction: Impact on Image Quality and Disease Detection
2025-Jan, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.08.023
PMID:39198137
|
研究论文 | 本研究比较了传统HASTE与基于深度学习的DL-HASTE在3T MRI中肠道成像的图像质量和疾病检测能力 | 开发了一种基于深度学习的单次激发T2加权图像重建技术(DL-HASTE),相比传统HASTE技术缩短了采集时间 | 研究仅纳入了91例患者,样本量相对较小 | 比较不同厚度切片的DL-HASTE与传统HASTE在肠道MRI中的图像质量差异 | 接受3T MR肠造影检查的患者 | 医学影像分析 | 肠道疾病 | 3T MRI,单次激发T2加权成像 | 深度学习 | 医学影像 | 91例患者(51名女性,平均年龄44±10岁) |
5944 | 2025-04-25 |
Detection and classification of electrocardiography using hybrid deep learning models
2025 Jan-Feb, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese
IF:2.7Q2
DOI:10.1016/j.hjc.2024.08.011
PMID:39218394
|
研究论文 | 本文提出了一种结合CNN和VAE的混合深度学习模型,用于心电图的检测和分类,以提高心血管疾病的自动诊断准确性 | 提出了一种新的CNN-VAE混合架构,用于心电图的分类,相比其他深度学习方法表现更优 | 模型仅在PTB-XL数据集上进行了训练和测试,可能需要更多样化的数据验证其泛化能力 | 提高心电图的自动分类准确性,以辅助心血管疾病的早期诊断 | 心电图数据 | 机器学习 | 心血管疾病 | 深度学习 | CNN-VAE混合模型 | 心电图信号 | PTB-XL数据集中的21,799条12导联心电图,来自18,869名患者 |
5945 | 2025-04-25 |
Unlocking the potential of AI: Machine learning and deep learning models for predicting carcinogenicity of chemicals
2025, Journal of environmental science and health. Part C, Toxicology and carcinogenesis
DOI:10.1080/26896583.2024.2396731
PMID:39228157
|
综述 | 本文综述了利用机器学习和深度学习模型预测化学物质致癌性的研究进展 | 比较分析了多种机器学习和深度学习算法在致癌性预测中的应用,并指出深度学习模型在数据量受限情况下的潜力 | 深度学习模型受限于现有致癌性数据集的规模 | 开发高效预测化学物质致癌性的替代方法 | 化学物质的致癌性 | 机器学习 | 癌症 | 机器学习、深度学习 | SVM、随机森林、集成学习、前馈神经网络、CNN、图卷积神经网络、胶囊神经网络、混合神经网络 | 化学物质数据 | NA |
5946 | 2025-04-25 |
Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: a multicenter experimental study
2025-Jan-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000002077
PMID:39248300
|
研究论文 | 本研究开发了一种基于病理组学的人工智能模型,用于快速且经济高效地预测口腔白斑(OLK)和头颈部鳞状细胞癌(HNSCC)中的9p染色体缺失,并评估患者预后 | 首次在OLK和HNSCC中开发了基因组改变预测的深度学习模型,结合了最新的Transformer方法和XGBoost算法 | 研究样本量相对较小,外部测试数据集仅有23例 | 开发一种基于病理组学的人工智能模型,用于预测9p染色体缺失并评估HNSCC患者预后 | 口腔白斑(OLK)和头颈部鳞状细胞癌(HNSCC)患者 | 数字病理 | 头颈部鳞状细胞癌 | 全切片图像分析 | Transformer和XGBoost | 图像 | 333例OLK病例(训练集217例,验证集93例,外部测试集23例),以及407例HNSCC病例(42例和365例) |
5947 | 2025-04-25 |
An efficient ranking-based ensembled multiclassifier for neurodegenerative diseases classification using deep learning
2025-Jan, Journal of neural transmission (Vienna, Austria : 1996)
DOI:10.1007/s00702-024-02830-x
PMID:39249515
|
research paper | 该研究开发了一种基于深度学习的排名集成多分类器,用于神经退行性疾病的分类 | 提出了一种基于加权策略的排名集成方法,结合五种深度学习模型进行分类,提高了诊断准确性 | 研究中未提及模型的可解释性及在更广泛数据集上的泛化能力 | 提高神经退行性疾病(如阿尔茨海默病和帕金森病)的分类准确率 | 阿尔茨海默病(AD)和帕金森病(PD)患者 | digital pathology | neurodegenerative disease | MRI | ensemble of five deep learning models | image | ADNI数据集用于AD分类,PPMI数据集用于PD分类 |
5948 | 2025-04-25 |
Artificial intelligence in interventional radiology: Current concepts and future trends
2025-Jan, Diagnostic and interventional imaging
IF:4.9Q1
DOI:10.1016/j.diii.2024.08.004
PMID:39261225
|
综述 | 本文综述了人工智能在介入放射学中的当前应用和未来趋势 | 探讨了深度学习模型特别是基础模型在介入放射学中的应用,以及AI如何提升手术效率和安全性 | 未具体提及AI技术在介入放射学中应用的具体限制或挑战 | 概述人工智能在介入放射学中的潜在应用和未来发展方向 | 介入放射学的医疗实践和技术发展 | 数字病理学 | NA | 深度学习 | 基础模型 | 多模态数据 | NA |
5949 | 2025-04-25 |
Diagnostic Value of Magnetic Resonance Imaging Radiomics and Machine-learning in Grading Soft Tissue Sarcoma: A Mini-review on the Current State
2025-Jan, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.08.035
PMID:39261231
|
review | 本文综述了当前利用放射组学、机器学习和深度学习在MRI上预测软组织肉瘤恶性程度的研究现状 | 结合语义成像特征、放射组学特征和深度学习特征的机器学习模型展示了比单一特征来源更优的预测性能 | NA | 预测软组织肉瘤的恶性程度 | 软组织肉瘤 | digital pathology | soft tissue sarcoma | MRI, 机器学习和深度学习 | random forest, support vector machine, LASSO, SMOTE | MRI图像 | NA |
5950 | 2025-04-25 |
SeqSeg: Learning Local Segments for Automatic Vascular Model Construction
2025-Jan, Annals of biomedical engineering
IF:3.0Q3
DOI:10.1007/s10439-024-03611-z
PMID:39292327
|
research paper | 本文提出了一种名为SeqSeg的深度学习算法,用于自动追踪和分割医学图像中的血管结构,以构建基于图像的血管模型 | SeqSeg采用局部U-Net推理方法,能够顺序分割血管结构,相比传统的2D和3D全局nnU-Net模型,能够分割更完整的血管系统,并能泛化到训练数据中未标注的血管结构 | NA | 改进心血管结构的计算机模型生成过程,提高自动化和效率 | 主动脉和主动脉-股动脉模型的CT和MR图像 | digital pathology | cardiovascular disease | deep learning | U-Net, nnU-Net | image | NA |
5951 | 2025-04-25 |
Deep Learning-Based Denoising Enables High-Quality, Fully Diagnostic Neuroradiological Trauma CT at 25% Radiation Dose
2025-Jan, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.08.018
PMID:39294053
|
research paper | 本研究评估了一种基于深度学习的去噪算法在神经放射学创伤CT扫描中降低辐射剂量的能力 | 使用深度学习去噪算法在25%辐射剂量下仍能保持高质量的诊断图像 | 单中心回顾性研究,样本量有限(100例患者) | 评估深度学习去噪算法在降低神经放射学创伤CT扫描辐射剂量方面的效果 | 神经放射学创伤患者的CT扫描图像 | digital pathology | traumatic neuroradiological emergencies | deep learning-based denoising (DLD), iterative reconstruction (IR2) | deep learning | CT scans | 100例神经放射学创伤患者 |
5952 | 2025-04-25 |
Deep Learning Model for Pathological Grading and Prognostic Assessment of Lung Cancer Using CT Imaging: A Study on NLST and External Validation Cohorts
2025-Jan, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.08.028
PMID:39294054
|
研究论文 | 开发并验证了一种基于CT影像的深度学习模型,用于肺癌的自动化病理分级和预后评估 | 利用MobileNetV3架构构建深度学习模型,实现了肺癌术前病理分级的自动化评估,并通过内外验证集验证了其高准确性和预后价值 | 研究样本主要来自NLST和TCIA数据库,可能无法代表所有肺癌患者群体 | 为外科医生提供非侵入性工具以指导肺癌手术规划 | 肺癌患者(非小细胞肺癌) | 数字病理 | 肺癌 | CT成像 | MobileNetV3 | 医学影像(CT) | 796例(NLST队列572例+外部验证队列224例) |
5953 | 2025-04-25 |
Physician Level Assessment of Hirsute Women and of Their Eligibility for Laser Treatment With Deep Learning
2025-Jan, Lasers in surgery and medicine
IF:2.2Q2
DOI:10.1002/lsm.23843
PMID:39308029
|
研究论文 | 本研究比较了医疗专业人员和基于卷积神经网络(CNN)的模型在评估多毛症女性患者激光脱毛资格方面的能力 | 开发了一种基于深度学习的激光脱毛资格评估工具,其表现与训练有素的皮肤科医生相当 | 需要前瞻性随机临床干预研究以实现真正的临床普适性 | 评估多毛症女性患者激光脱毛的资格 | 多毛症女性患者 | 数字病理 | 多毛症 | 深度学习 | CNN | 图像 | NA |
5954 | 2025-04-25 |
Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction
2025-Jan, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03461-5
PMID:39316090
|
研究论文 | 本研究探讨了基于深度学习的加速MRI扫描在脑体积测量中的可行性和可靠性 | 使用深度学习重建技术,实现了3D T1加权MRI扫描的加速,最高可达75%的加速比 | 研究样本量较小(模拟加速数据集42人,验证数据集48人),且未在所有脑区(如苍白球)表现出良好一致性 | 评估深度学习加速MRI在脑体积测量中的临床应用可行性 | 3D T1加权MRI图像和脑体积测量 | 医学影像分析 | 脑萎缩相关疾病 | 深度学习重建技术 | 深度学习(具体架构未说明) | 3D MRI图像 | 模拟加速数据集42人,验证数据集48人 |
5955 | 2025-04-25 |
Step Width Estimation in Individuals With and Without Neurodegenerative Disease via a Novel Data-Augmentation Deep Learning Model and Minimal Wearable Inertial Sensors
2025-Jan, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3470310
PMID:39331558
|
研究论文 | 提出了一种新颖的数据增强深度学习模型,用于通过最小化可穿戴惯性传感器估计步宽 | 使用数据增强的深度学习模型和最小化可穿戴惯性传感器(IMUs)来估计步宽,克服了传统方法的高成本和耗时问题 | 研究样本量较小,仅包括12名神经退行性疾病患者和17名健康个体 | 开发一种便携式步宽监测方法,以增强康复训练、评估和动态平衡控制 | 神经退行性疾病患者(SCA3)和健康个体 | 机器学习 | 神经退行性疾病 | 深度学习 | 数据增强深度学习模型 | 惯性传感器数据 | 12名SCA3患者和17名健康个体 |
5956 | 2025-04-25 |
FedPneu: Federated Learning for Pneumonia Detection across Multiclient Cross-Silo Healthcare Datasets
2025, Current medical imaging
IF:1.1Q3
|
research paper | 该研究开发了一个基于联邦学习的深度学习模型FedPneu,用于通过X光图像早期检测肺炎 | 采用联邦学习框架,解决了传统集中式深度学习模型在医疗影像数据上的隐私泄露风险 | 研究仅测试了2-5个客户端架构,未探索更大规模的分布式场景 | 开发一个隐私保护的肺炎早期检测系统 | 多机构医疗影像数据集 | digital pathology | pneumonia | federated learning | deep learning | X-ray images | 未明确说明具体样本量(多机构X光数据集) |
5957 | 2025-04-25 |
En masse evaluation of RNA guides (EMERGe) for ADARs
2025, Methods in enzymology
DOI:10.1016/bs.mie.2024.11.030
PMID:39870442
|
研究论文 | 本文介绍了一种名为EMERGe的高通量筛选方法,用于全面评估RNA引导链以促进ADARs对特定腺苷的编辑 | 开发了EMERGe方法,克服了现有设计原则难以编辑特定靶点的限制,为ADARs的全面筛选提供了新工具 | 未明确说明该方法在体内环境中的有效性及潜在脱靶效应 | 开发一种高通量筛选方法以优化RNA引导链设计,充分释放ADARs编辑技术的治疗潜力 | ADARs酶及其RNA引导链 | 基因编辑 | NA | NGS | 机器学习或深度学习模型(潜在应用) | RNA序列数据 | NA |
5958 | 2025-04-25 |
Attention-Guided Learning With Feature Reconstruction for Skin Lesion Diagnosis Using Clinical and Ultrasound Images
2025-Jan, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3450682
PMID:39208042
|
research paper | 提出一种结合临床和超声模态的注意力引导学习与特征重建的皮肤病变诊断网络,以提高诊断准确性 | 提出注意力引导学习模块和特征重建学习策略,融合临床和超声模态的表面和深度信息,增强特征表示 | 现有多模态方法仅局限于皮肤临床和皮肤镜模态的表面信息,限制了皮肤病变诊断准确性的进一步提升 | 提高皮肤病变的诊断准确性 | 皮肤病变 | digital pathology | skin lesion | deep learning | CNN | image | NA |
5959 | 2025-04-25 |
Digital pathology assessment of kidney glomerular filtration barrier ultrastructure in an animal model of podocytopathy
2025, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpaf024
PMID:40223818
|
研究论文 | 开发了一种基于深度学习的数字病理计算方法,用于测量肾小球滤过屏障超微结构的GBM和PFP宽度 | 首次使用U-Net模型和图像处理算法自动化测量TEM图像中的GBM和PFP宽度,解决了传统手动测量的劳动密集和操作者间变异性问题 | 自动化与手动测量的PFP宽度在ILK cKO标本中存在差异,且自动化方法对PFP宽度的表型差异反映不如GBM明显 | 开发自动化工具以促进足细胞病研究 | Integrin-Linked Kinase (ILK)足细胞特异性条件敲除小鼠和野生型对照小鼠的肾脏TEM图像 | 数字病理 | 足细胞病 | 透射电子显微镜(TEM) | U-Net | 图像 | 4周龄的WT和ILK cKO同窝小鼠肾脏TEM图像对,采用4折交叉验证研究 |
5960 | 2025-04-25 |
c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0320360
PMID:40228177
|
研究论文 | 提出了一种名为c-Triadem的约束性可解释深度学习模型,用于识别阿尔茨海默病的新型生物标志物 | c-Triadem模型结合了基因分型数据、基因表达数据和临床信息,通过SHAP分析识别关键基因和临床特征,具有高准确率 | 模型依赖于ADNI数据集,可能在其他数据集上的泛化能力有限 | 开发一种新的深度学习模型,用于早期诊断阿尔茨海默病和识别血液生物标志物 | 阿尔茨海默病患者、轻度认知障碍患者和认知正常人群 | 机器学习 | 阿尔茨海默病 | 基因分型、微阵列、SHAP分析 | 深度学习神经网络 | 基因分型数据、基因表达数据、临床信息 | ADNI数据集中的样本 |