深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24517 篇文献,本页显示第 581 - 600 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
581 2025-05-11
Automated CT Measurement of Total Kidney Volume for Predicting Renal Function Decline after 177Lu Prostate-specific Membrane Antigen-I&T Radioligand Therapy
2025-Feb, Radiology IF:12.1Q1
research paper 该研究利用深度学习模型自动测量肾脏总体积(TKV),以预测接受177Lu-PSMA-I&T放射性配体治疗的转移性去势抵抗性前列腺癌患者的肾功能下降 首次将基于nnU-Net框架的深度学习分割模型TotalSegmentator应用于标准CT图像的TKV自动测量,并证明其优于早期eGFR变化在预测肾功能恶化方面的性能 研究为回顾性设计且样本量有限(121例患者),未评估长期肾功能结局 寻找预测转移性去势抵抗性前列腺癌患者接受Lu-PSMA-I&T治疗后肾功能显著恶化的生物标志物 接受至少4个周期177Lu-PSMA-I&T治疗的转移性去势抵抗性前列腺癌患者 digital pathology prostate cancer CT成像 nnU-Net框架的深度学习分割模型(TotalSegmentator) 医学影像(CT图像) 121例患者(平均年龄76±7岁)
582 2025-05-11
Inherently imperfect, inherently evolving - The pursuit of precision through biomarkers
2025-Feb, Biomedical journal IF:4.1Q2
review 本期生物医学期刊特辑聚焦癌症生物标志物研究,探讨多种生物标志物在癌症检测和管理中的应用,并涵盖其他医学领域的研究进展 介绍了多种新型生物标志物(如cfDNA、粪便miRNA、EB病毒DNA等)在多种癌症中的应用,以及深度学习在创伤成像和心电图预测死亡率中的进展 文章为综述性质,未涉及具体实验设计和样本量的详细信息 探讨生物标志物在癌症检测和管理中的应用,以及医学其他领域的最新研究进展 多种癌症(结直肠癌、卵巢癌、鼻咽癌、肝细胞癌等)、mpox社会污名、miRNA研究、创伤成像、蛔虫感染、自身免疫性肝炎等 数字病理学 多种癌症(结直肠癌、卵巢癌、鼻咽癌、肝细胞癌等) LC-MS、深度学习 深度学习模型 生物标志物数据、医学影像、心电图 NA
583 2025-05-11
[Research Progress and Prospects of Minimally Invasive Surgical Instrument Segmentation Methods Based on Artificial Intelligence]
2025-Jan-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
review 本文综述了基于深度学习的微创手术器械分割方法,并探讨了其研究进展与前景 深入分析了训练算法的监督方法、网络结构改进和注意力机制,并探讨了基于Segment Anything Model的方法 深度学习方法对数据要求极高,当前数据增强方法仍需探索 提升微创内窥镜成像系统和手术视频分析系统的性能 微创手术器械的分割方法 computer vision NA 深度学习 Segment Anything Model image NA
584 2025-05-11
Impact of Deep Learning 3D CT Super-Resolution on AI-Based Pulmonary Nodule Characterization
2025-Jan-27, Tomography (Ann Arbor, Mich.)
研究论文 本文提出了一种基于深度学习的超分辨率技术,用于从厚层CT图像生成薄层CT图像,以提高肺结节体积测量和分类的准确性 使用深度学习超分辨率技术从厚层CT生成薄层CT图像,显著提高了肺结节分类的准确性 未提及该方法在不同类型CT扫描仪或不同分辨率下的泛化能力 提高肺结节体积测量和分类的准确性,以改善肺癌筛查程序的诊断效果 肺结节的体积测量和分类 数字病理 肺癌 CT扫描 深度学习 CT图像 未明确提及具体样本数量
585 2025-05-11
NETest and Gastro-Entero-Pancreatic Neuroendocrine Tumors: Still Far from Routine Clinical Application? A Systematic Review
2025-Jan-27, Genes IF:2.8Q2
系统综述 本文系统综述了NETest在胃肠胰神经内分泌肿瘤(GEP-NETs)诊断和预后分层中的应用 NETest是一种基于实时PCR结合深度学习策略的工具,专门用于识别具有神经内分泌基因型的肿瘤 NETest在某些研究中显示出低特异性,主要归因于与其他胃肠恶性肿瘤的干扰 评估NETest在GEP-NETs诊断和预后中的临床应用价值 胃肠胰神经内分泌肿瘤(GEP-NETs) 数字病理学 胃肠胰神经内分泌肿瘤 实时PCR和深度学习 NA 分子生物学数据 五项研究评估诊断作用,九项研究评估预后价值
586 2025-05-11
Improving spleen segmentation in ultrasound images using a hybrid deep learning framework
2025-01-11, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种用于超声图像中脾脏分割的新方法,采用两阶段训练方法 结合SegFormer和Pix2Pix的优势,提出了一种混合深度学习方法,显著提高了脾脏分割的准确性 NA 提高超声图像中脾脏分割的准确性 脾脏超声图像 计算机视觉 NA 深度学习 SegFormerB0和Pix2Pix 超声图像 450张脾脏超声图像(Spleenex数据集)
587 2025-05-11
Multi-atlas multi-modality morphometry analysis of the South Texas Alzheimer's Disease Research Center postmortem repository
2025, NeuroImage. Clinical
研究论文 本文报告了针对南德克萨斯阿尔茨海默病研究中心尸检库进行的首次形态计量学分析 开发了专门用于处理尸检MRI序列的处理流程,并解决了尸检神经影像学中的多个挑战,如脑组织与固定液的分离、更新的脑图谱需求以及脑固定引起的组织对比度变化 区域脑容量在尸检扫描中难以测量 研究阿尔茨海默病及相关痴呆症的神经病理学过程 尸检脑组织样本 数字病理学 阿尔茨海默病 MRI Deep Learning MRI扫描图像 200个脑捐赠样本和100个经过整理的MRI扫描会话
588 2025-05-11
Ventilator pressure prediction employing voting regressor with time series data of patient breaths
2025 Jan-Mar, Health informatics journal IF:2.2Q3
研究论文 本研究提出了一种新型混合呼吸机压力预测器(H-VPP),用于预测呼吸机呼吸回路中的气道压力 提出了一种新型混合呼吸机压力预测器(H-VPP),其性能优于其他机器学习和深度学习模型 未提及具体的研究样本量或数据集的详细信息 精确预测呼吸机压力,以减少因压力不当导致的患者风险 COVID-19患者使用的呼吸机 机器学习 COVID-19 投票回归器 H-VPP 时间序列数据 NA
589 2025-05-11
Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study
2025, PloS one IF:2.9Q1
research paper 本研究通过深度学习技术评估中风后遗症及康复效果,特别关注脑损伤区域的精确识别与追踪 引入了基于深度学习的先进神经影像技术SWI-BITR-UNet模型,结合SWIN Transformer的局部感受野和移位机制,以及U-Net架构中的有效特征融合策略,提高了多模态MRI扫描中脑损伤区域分割的准确性 未提及具体局限性 克服传统方法在中风后遗症评估和康复效果监测中的局限性,提高脑损伤区域的精确识别与追踪 中风后遗症患者及脑损伤区域 digital pathology stroke neuroimaging technique, multimodal MRI scans SWI-BITR-UNet, 3D CNN, SWIN Transformer, U-Net 3D medical imaging data Bra2020数据集
590 2025-05-11
Optimizing Bi-LSTM networks for improved lung cancer detection accuracy
2025, PloS one IF:2.9Q1
研究论文 本研究比较了手工特征提取和深度学习在肺癌诊断中的效果,并优化了Bi-LSTM网络以提高检测准确率 结合手工特征提取和深度学习(Bi-LSTM网络)的方法,显著提高了肺癌检测的准确率 未提及具体的数据来源和样本多样性,可能影响模型的泛化能力 提高肺癌早期检测的准确率,优化计算机辅助诊断系统 肺癌的医学图像特征 计算机视觉 肺癌 Gray Level Co-occurrence Matrix (GLCM)特征提取,支持向量机(SVM),深度学习 Bi-LSTM, SVM 医学图像 NA
591 2025-05-11
Trustworthy diagnosis of Electrocardiography signals based on out-of-distribution detection
2025, PloS one IF:2.9Q1
research paper 提出了一种基于分布外检测的心电图信号可信诊断方法 结合CNN和注意力机制增强特征提取,利用Energy和ReAct技术识别分布外心脏病,提高诊断可信度 未提及具体样本量外的其他潜在限制 提升心电图信号诊断的准确性和可信度,特别是对未知心脏病的识别 心电图信号 machine learning cardiovascular disease Energy and ReAct CNN with Attention mechanisms ECG signals MIT-BIH Arrhythmia Database and INCART 12-lead Arrhythmia Database
592 2025-05-11
Chinese medical named entity recognition utilizing entity association and gate context awareness
2025, PloS one IF:2.9Q1
研究论文 该研究提出了一种结合实体关联和门控上下文感知的中文医学命名实体识别方法 采用RoBERTa-wwm-ext预训练模型提取上下文特征,结合RNN和多头注意力机制捕捉实体间依赖关系,提高了识别准确率 未明确提及方法在更广泛医学文本或跨语言场景中的适用性 提升中文医学文本中命名实体识别的效率和准确性 中文医学文本中的命名实体 自然语言处理 NA RoBERTa-wwm-ext预训练模型, RNN, 多头注意力机制, 条件随机场 RoBERTa-wwm-ext, RNN, 多头注意力机制 文本 MCSCSet和CMeEE数据集
593 2025-05-11
Author name disambiguation based on heterogeneous graph neural network
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于异构图注意力神经网络的作者姓名消歧方法,以提高论文作者分配的准确性 引入了异构图注意力神经网络,结合多注意力机制,改进了传统的层次聚类方法,能够自动确定最佳k值 未提及具体的数据集局限性或模型在其他数据集上的泛化能力 解决作者姓名消歧问题,提高论文作者分配的准确性和效率 学术论文作者 自然语言处理 NA 异构图注意力神经网络 GNN 文本 Aminer数据集
594 2025-05-11
Untrained perceptual loss for image denoising of line-like structures in MR images
2025, PloS one IF:2.9Q1
研究论文 本研究探讨了在包含线状结构(如根或血管)的MR图像去噪中,使用未经训练的感知损失(uPL)的效果 将感知损失应用于3D数据,并通过比较未经训练网络的特征图来优化损失函数,展示了在多种噪声水平和网络架构下的优越性能 研究仅针对包含线状结构的MR图像,未涉及其他类型的图像或噪声 探索在MR图像去噪中,针对线状结构特性优化的损失函数的有效性 MR图像中的线状结构(如脑部血管和植物根部) 数字病理学 NA 深度学习 CNN 3D图像 536张植物根部MR图像和450张脑部血管MR图像(MRA)
595 2025-05-11
Enhancing nnUNetv2 Training with Autoencoder Architecture for Improved Medical Image Segmentation
2025, Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings
研究论文 本研究开发了一种基于nnUNetv2框架并结合自动编码器架构的新型深度学习模型,用于提高头颈癌MRI引导放疗图像中肿瘤体积的自动分割准确性 在nnUNetv2框架中引入自动编码器架构,将原始训练图像作为额外输入通道,并采用MSE损失函数以提高分割精度 研究仅针对头颈癌患者,样本量相对有限(150名训练患者和50名测试患者) 提高MRI引导放疗图像中肿瘤体积的自动分割准确性,优化放射肿瘤学临床工作流程 头颈癌患者的MRI引导放疗图像 数字病理学 头颈癌 MRI nnUNetv2结合自动编码器 医学图像 150名训练患者和50名测试患者
596 2025-05-11
A novel deep learning technique for multi classify Alzheimer disease: hyperparameter optimization technique
2025, Frontiers in artificial intelligence IF:3.0Q2
research paper 提出了一种基于新型超参数优化技术的深度学习模型,用于更准确地分类阿尔茨海默病的不同阶段 使用新提出的超参数优化方法来识别ResNet152V2模型的超参数,以解决有限数据和计算资源的问题 未提及具体的数据集大小或计算资源限制的详细情况 通过深度学习技术提高阿尔茨海默病不同阶段的分类准确性 阿尔茨海默病的不同阶段 machine learning geriatric disease hyperparameter optimization ResNet152V2 image NA
597 2025-05-11
Using artificial intelligence to develop a measure of orthopaedic treatment success from clinical notes
2025, Frontiers in digital health IF:3.2Q2
research paper 使用人工智能从临床记录中开发一种衡量骨科治疗成功的方法 利用AI技术从临床记录中识别治疗成功或失败的短语,为骨科患者开发一种新的治疗成功指标 研究仅针对急性肩部损伤患者,样本量有限,且仅在一个地区医疗系统内进行 开发一种反映骨科治疗成功的可用结果测量方法 急性肩部损伤患者的临床记录 自然语言处理 骨科疾病 机器学习和深度学习算法 Bio-ClinicalBERT text 868份临床记录,来自123名医生和35个科室
598 2025-05-11
[Identification of kidney stone types by deep learning integrated with radiomics features]
2024-Dec-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 本文提出了一种结合放射组学和深度学习的框架,用于高精度自动术前分类肾结石类型 结合放射组学特征和深度学习,实现肾结石类型的自动分类 实验结果的准确率为84.5%,仍有提升空间 实现肾结石类型的自动术前分类 感染性和非感染性肾结石 数字病理 肾结石 放射组学方法 3D CNN, LightGBM 图像 NA
599 2025-05-11
[Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy]
2024-Dec-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
research paper 提出了一种轻量化的扩张并行卷积U-Net(DPU-Net)及多尺度适应向量知识蒸馏(MAVKD)训练策略,用于心脏磁共振图像分割 采用独特的卷积通道变化方式减少参数数量,结合残差块和扩张卷积缓解梯度爆炸和空间信息丢失问题,并利用知识蒸馏策略提升分割精度 未提及模型在更广泛数据集上的泛化能力或临床实际应用效果 降低心脏MRI图像分割深度学习网络的参数量和浮点运算量,同时保持或提高分割精度 心脏磁共振图像 digital pathology cardiovascular disease MRI DPU-Net(基于U-Net改进的轻量化网络) image ACDC公共数据集(具体样本量未说明)
600 2025-05-11
[Coronary artery segmentation based on Transformer and convolutional neural networks dual parallel branch encoder neural network]
2024-Dec-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
研究论文 提出一种基于Transformer和CNN双并行分支编码器神经网络的新型冠状动脉分割模型DUNETR 采用Transformer和CNN双编码器设计,通过NRFF模块融合全局和局部特征,显著提升3D冠状动脉分割效果 仅在公开数据集上验证,未说明临床实际应用效果 提升冠状动脉CTA图像分割的准确性和效率 冠状动脉CTA图像 计算机视觉 心血管疾病 CTA成像 DUNETR(Transformer+CNN双编码器U-Net) 3D医学图像 公开数据集(未说明具体样本量)
回到顶部