本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
621 | 2025-07-23 |
Tracking the Preclinical Progression of Transthyretin Amyloid Cardiomyopathy Using Artificial Intelligence-Enabled Electrocardiography and Echocardiography
2025-Feb-24, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.25.24312556
PMID:39252891
|
研究论文 | 利用人工智能技术通过心电图和超声心动图追踪转甲状腺素蛋白淀粉样心肌病的临床前进展 | 首次应用深度学习模型分析心电图和超声心动图数据,实现对转甲状腺素蛋白淀粉样心肌病的早期风险分层 | 研究为回顾性分析,样本来源仅限于两个医疗中心 | 开发可扩展的转甲状腺素蛋白淀粉样心肌病临床前监测策略 | 转诊接受核素心肌淀粉样蛋白检测的患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频(TTE)、图像(ECG) | 内部队列984人(YNHHS),外部队列806人(HMH),共分析7,352次TTE和32,205次ECG数据 |
622 | 2025-07-23 |
Mapping the regulatory effects of common and rare non-coding variants across cellular and developmental contexts in the brain and heart
2025-Feb-20, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.18.638922
PMID:40027628
|
研究论文 | 该研究利用深度学习模型预测了1500万个非编码变异在132个成人和胎儿脑及心脏细胞环境中的调控效应,以区分人类性状和疾病的候选因果变异及其特定环境效应 | 开发了FLARE模型,一种特定环境功能基因组约束模型,用于优先考虑具有极端调控效应的突变,并在自闭症相关基因附近识别出其他方法可能遗漏的突变异常值 | 研究主要关注脑和心脏的细胞环境,可能不适用于其他组织或器官 | 理解常见和罕见非编码变异在脑和心脏发育及疾病中的调控效应 | 人类非编码基因组变异 | 基因组学 | 神经发育障碍 | 单细胞ATAC-seq,深度学习 | 深度学习模型,FLARE | 基因组数据 | 1500万个变异,132个细胞环境 |
623 | 2025-07-23 |
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images
2025-Feb-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82639-6
PMID:39952935
|
研究论文 | 本研究验证了Cellpose在自发荧光显微镜图像中的单细胞分割可靠性 | 开发了一种新的自发荧光训练模型(ATM),用于NAD(P)H强度图像的核分割,提高了分割的重复性和准确性 | 研究主要针对NAD(P)H图像,未涵盖其他类型的自发荧光图像 | 验证Cellpose在自发荧光显微镜图像中的单细胞分割性能 | PANC-1细胞和患者来源的癌症类器官(9例患者) | 数字病理学 | 癌症 | 多光子强度成像和荧光寿命成像显微镜(FLIM) | Cellpose | 图像 | PANC-1细胞和9例患者来源的癌症类器官 |
624 | 2025-07-23 |
Top-DTI: Integrating Topological Deep Learning and Large Language Models for Drug Target Interaction Prediction
2025-Feb-08, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.07.637146
PMID:39975019
|
研究论文 | 提出了一种名为Top-DTI的新框架,通过整合拓扑深度学习和大型语言模型来预测药物靶点相互作用 | 结合拓扑数据分析和大型语言模型,利用持久同源性提取蛋白质接触图和药物分子图像的拓扑特征,同时通过蛋白质和药物的大型语言模型生成语义丰富的嵌入 | 未提及具体局限性 | 提高药物靶点相互作用预测的准确性和鲁棒性,为药物发现提供计算支持 | 药物靶点相互作用 | 机器学习 | NA | 拓扑数据分析(TDA)、大型语言模型(LLMs) | Top-DTI | 蛋白质接触图、药物分子图像、蛋白质序列、药物SMILES字符串 | 公共BioSNAP和Human DTI基准数据集 |
625 | 2025-07-23 |
Deep learning to decode sites of RNA translation in normal and cancerous tissues
2025-Feb-02, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56543-0
PMID:39894899
|
研究论文 | 本文介绍了一种基于transformer模型的方法RiboTIE,用于增强核糖体分析数据的分析,以解码RNA翻译位点在正常和癌变组织中的变化 | RiboTIE直接利用原始核糖体分析计数,以高精度和灵敏度检测翻译的开放阅读框(ORFs),在多种数据集上评估其性能 | 未提及具体的技术限制或数据集局限性 | 提高核糖体分析数据的分析准确性和深度,以更好地理解蛋白质合成及其在疾病中的意义 | 正常脑组织和髓母细胞瘤癌症样本中的RNA翻译调控 | 生物信息学 | 髓母细胞瘤 | Ribo-Seq | transformer模型 | 核糖体分析数据 | 多种数据集,包括正常脑组织和髓母细胞瘤样本 |
626 | 2025-07-23 |
Cell Segmentation With Globally Optimized Boundaries (CSGO): A Deep Learning Pipeline for Whole-Cell Segmentation in Hematoxylin-and-Eosin-Stained Tissues
2025-Feb, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102184
PMID:39528162
|
研究论文 | 开发了一种名为CSGO的深度学习流程,用于在H&E染色组织中进行全细胞分割 | 整合了细胞核和细胞膜分割算法,并采用基于能量的分水岭方法进行后处理,显著提高了分割性能 | 仅在5个外部数据集上进行了评估,样本多样性可能有限 | 开发自动化的全细胞分割方法以推进病理图像分析能力 | H&E染色组织中的细胞 | 数字病理学 | 肝癌 | 深度学习 | YOLO, U-Net | 图像 | 7例肝癌和11例正常肝组织样本,并在5个外部数据集(包括肝、肺和口腔疾病病例)上进行评估 |
627 | 2025-07-23 |
Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
2025-Feb, Cytometry. Part A : the journal of the International Society for Analytical Cytology
DOI:10.1002/cyto.a.24917
PMID:39982036
|
研究论文 | 本文介绍了一种基于最优传输数学的新技术,用于直接从成像数据中建模与核染色质结构相关的信息内容 | 提出了一种基于最优传输的形态测量(TBM)框架,能够表示每个细胞核相对于模板细胞核的全部信息内容,且对不同染色模式和成像协议具有鲁棒性 | NA | 开发一种定量测量方法,用于在不同数据集和癌症类型之间进行有意义的比较 | 癌细胞核的形态学特征 | 数字病理学 | 癌症(包括肝癌、甲状腺癌、肺癌和皮肤癌等) | 最优传输、特征提取、深度学习 | TBM框架 | 图像 | 大型数据集(如TCGA和人类蛋白质图谱) |
628 | 2025-07-23 |
ProtoSAM-2D: 2D Semantic Segment Anything Model with Mask-Level Prototype-Learning and Distillation
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3047044
PMID:40678353
|
研究论文 | 提出了一种名为ProtoSAM-2D的增强型2D医学图像语义分割模型,结合了原型学习和蒸馏技术 | 通过引入掩码级原型预测机制和蒸馏方法,增强了SAM-Med2D的语义理解能力,同时保持了计算效率 | 目前仅针对2D医学图像,未涉及3D或其他复杂场景 | 提升医学图像语义分割的适应性和效率 | 2D医学图像中的多器官分割 | 数字病理 | NA | 深度学习、原型学习、知识蒸馏 | SAM增强模型(基于CNN架构) | 2D医学图像 | 未明确说明具体数量,但涉及两种成像模态的多器官分割任务 |
629 | 2025-07-23 |
A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records
2025-Jan-23, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.01.21.25320916
PMID:39974062
|
研究论文 | 开发了一个基于Transformer的临床结果预测模型TECO,用于利用住院电子健康记录(EHR)数据预测ICU死亡率 | 提出了一个Transformer基础的模型TECO,在预测ICU死亡率方面优于专有指标和传统机器学习模型,并能识别与结果相关的临床可解释特征 | 需要进一步验证 | 开发一个深度学习模型用于临床结果预测 | 住院患者的电子健康记录数据 | 机器学习 | COVID-19, ARDS, 败血症 | 深度学习 | Transformer | 电子健康记录(EHR) | COVID-19患者2579人,ARDS队列2799人,败血症队列6622人 |
630 | 2025-07-23 |
Development and Validation of a Machine Learning Method Using Vocal Biomarkers for Identifying Frailty in Community-Dwelling Older Adults: Cross-Sectional Study
2025-01-16, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/57298
PMID:39819744
|
研究论文 | 开发并验证了一种利用声音生物标志物识别社区居住老年人虚弱状态的机器学习方法 | 首次使用深度学习提取的声学特征作为声音生物标志物来预测虚弱状态,并比较了不同数据组合模型的性能 | 样本量较小(127人),且未说明模型在其他人群中的泛化能力 | 开发非侵入性、可扩展的虚弱状态识别方法 | 社区居住的50岁及以上老年人 | 机器学习 | 老年疾病 | 深度学习声学特征提取 | SpeechAI(纯语音模型)、DemoAI(纯人口统计模型)、DemoSpeechAI(混合模型) | 语音数据和人口统计数据 | 127名社区居住老年人 |
631 | 2025-07-23 |
BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans
2025-Jan-11, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.22.533696
PMID:36993540
|
research paper | 介绍了一种名为BIBSNet的深度学习网络,用于婴儿MRI扫描的脑部分割 | 提出了一个开源、社区驱动的模型BIBSNet,利用数据增强和大样本手动注释图像,实现了鲁棒且可泛化的脑部分割 | 研究样本年龄范围仅限于0-8个月,可能不适用于其他年龄段的婴儿 | 开发一种高效的婴儿脑部MRI图像分割方法,以支持典型和非典型脑发育研究 | 0-8个月大的婴儿的MRI脑部图像 | digital pathology | NA | MRI扫描 | CNN | image | 90名参与者,年龄范围0-8个月(中位年龄4.6个月) |
632 | 2025-07-23 |
ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants
2025-Jan-08, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.25.630221
PMID:39829783
|
研究论文 | 介绍了一种名为ChromBPNet的深度学习DNA序列模型,用于解析染色质可及性谱的序列语法、转录因子足迹和调控变异 | ChromBPNet能够分解酶特异性偏差与调控序列决定因素,从而在不同实验和测序深度下稳健地发现紧凑的TF基序词典、协同基序语法和精确足迹 | 尽管设计轻量,但与当代更大的模型相比,其性能仍有待进一步验证 | 解码调控DNA和遗传变异,以理解转录因子结合和染色质可及性的序列语法和遗传变异 | 染色质可及性谱和调控序列 | 机器学习 | NA | 染色质可及性测定 | 深度学习DNA序列模型 | DNA序列数据 | NA |
633 | 2025-07-23 |
Step Width Estimation in Individuals With and Without Neurodegenerative Disease via a Novel Data-Augmentation Deep Learning Model and Minimal Wearable Inertial Sensors
2025-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3470310
PMID:39331558
|
研究论文 | 提出了一种新型数据增强深度学习模型,用于通过最小化可穿戴惯性传感器估计步宽 | 使用数据增强的深度学习模型和最小化可穿戴惯性传感器(IMUs)来估计步宽,克服了传统方法的高成本和耗时问题 | 研究样本量较小,仅包括12名神经退行性疾病患者和17名健康个体 | 开发一种便携式步宽监测方法,用于神经退行性疾病患者和健康个体的康复训练和动态平衡控制 | 神经退行性疾病患者(SCA3)和健康个体 | 机器学习 | 神经退行性疾病 | 数据增强深度学习模型 | 深度学习模型 | 惯性传感器数据 | 12名神经退行性疾病患者和17名健康个体 |
634 | 2025-07-23 |
Continuous Prediction of Wrist Joint Kinematics Using Surface Electromyography From the Perspective of Muscle Anatomy and Muscle Synergy Feature Extraction
2025-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3484994
PMID:39437291
|
研究论文 | 本文提出四种深度学习模型,从不同角度提取肌肉协同特征,用于预测中风患者手腕关节运动意图 | 首次从肌肉解剖学角度使用3DCNN模型预测运动意图,并重构1D sEMG样本为2D帧 | 传统矩阵分解算法在提取肌肉协同特征方面仍存在一定局限性 | 提高中风患者上肢功能障碍康复效果,通过sEMG信号预测运动意图 | 中风患者的手腕关节运动 | 机器学习 | 中风 | sEMG信号处理 | 3DCNN, CNN-LSTM, GAN | sEMG信号 | 自建手腕运动数据集和公开Ninapro DB2数据集 |
635 | 2025-07-23 |
Combination of facial and nose features of Amur tigers to determine age
2025-Jan, Integrative zoology
IF:3.5Q1
DOI:10.1111/1749-4877.12817
PMID:38509845
|
研究论文 | 通过结合东北虎的面部和鼻子特征,利用深度学习模型进行年龄测定 | 发现老虎鼻子上的黑色斑点面积与年龄呈正相关,并首次将面部和鼻子特征结合用于年龄测定 | 准确率为87.81%,仍有提升空间 | 开发一种基于图像特征的东北虎年龄测定方法 | 东北虎的面部和鼻子特征 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 未提及具体样本数量 |
636 | 2025-07-23 |
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis
2025, Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)
DOI:10.1007/978-3-031-78761-4_5
PMID:39758707
|
研究论文 | 提出一种基于稀疏化和自监督的简单方法,用于提高功能性磁共振成像(fMRI)分析的泛化性 | 通过联合训练稀疏输入掩码、变分自编码器(VAE)和下游分类器,识别并保留高度信息化的功能连接,同时遮挡其余部分 | 需要部分标记样本训练分类器,且依赖于额外的未标记数据来优化稀疏掩码和VAE | 提高rs-fMRI分析在精神病学障碍和个人特征识别中的泛化能力 | 功能性磁共振成像(fMRI)数据 | 机器学习 | 精神病学障碍 | rs-fMRI | VAE | 图像 | 公共ABIDE数据集中的标记样本来自18个站点,外加两个额外分布外站点的未标记样本 |
637 | 2025-07-23 |
Predicting Blood Pressures for Pregnant Women by PPG and Personalized Deep Learning
2025-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3386707
PMID:38598377
|
研究论文 | 本研究通过光电容积描记术(PPG)数据和个性化深度学习模型预测孕妇血压,以有效预警可能的子痫前期 | 提出了一种三阶段深度学习模型,包括基线模型构建、孕妇数据微调和个性化迁移学习,显著提高了血压预测的准确性 | 样本量相对较小(194名受试者,其中孕妇40名),可能影响模型的泛化能力 | 开发一种连续、无袖带的孕妇血压监测解决方案 | 孕妇血压预测 | 机器学习 | 妊娠相关疾病 | PPG(光电容积描记术) | 1D-CNN with CBAMs + bi-directional GRUs + attention layers | PPG信号数据 | 194名受试者(154名正常个体和40名孕妇) |
638 | 2025-07-23 |
Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production
2025, Discover imaging
DOI:10.1007/s44352-025-00006-1
PMID:40098681
|
研究论文 | 本研究利用深度学习成像分析技术,识别与致癌物产生相关的细菌代谢状态 | 首次使用深度学习成像分析方法区分产生和不产生致癌物DCA的C. scindens细胞状态 | 研究仅针对C. scindens和两种Bacteroides物种,未涵盖其他可能相关的肠道细菌 | 探索成像方法在识别与结直肠癌相关的细菌代谢状态中的应用 | C. scindens细菌及其在不同培养条件下的代谢状态 | 数字病理学 | 结直肠癌 | 光学显微镜成像 | CNN, DenseNet, ResNet, nnU-Net | 图像 | 四种培养条件下的C. scindens图像数据 |
639 | 2025-07-23 |
Gross tumor volume confidence maps prediction for soft tissue sarcomas from multi-modality medical images using a diffusion model
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100734
PMID:40123775
|
研究论文 | 本研究开发了一种基于扩散模型的深度学习技术,用于从多模态医学图像中自动预测软组织肉瘤的总肿瘤体积(GTV)置信图 | 首次使用扩散模型预测GTV置信图,并考虑了读者间和读者内的变异性 | 样本量较小(49例患者),且仅使用了公开数据集 | 开发自动化的GTV勾画技术以提高放疗计划的可重复性 | 软组织肉瘤患者的多模态医学图像(FDG-PET、CT和MRI) | 数字病理 | 软组织肉瘤 | 扩散模型 | 扩散模型 | 医学图像(FDG-PET、CT和MRI) | 49例患者的多模态医学图像数据 |
640 | 2025-07-23 |
PSSR2: a user-friendly Python package for democratizing deep learning-based point-scanning super-resolution microscopy
2025, BMC methods
DOI:10.1186/s44330-024-00020-5
PMID:40666158
|
研究论文 | 介绍PSSR2,一个用户友好的Python包,用于普及基于深度学习的点扫描超分辨率显微镜技术 | PSSR2改进了PSSR的工作流程和方法,通过改进半合成数据生成和训练过程,提供了更高质量的超分辨率图像 | PSSR2模型仅适用于与训练数据足够相似的数据进行超分辨率处理,并且需要针对真实世界的地面真实数据进行验证 | 普及基于深度学习的超分辨率显微镜技术,提高显微镜图像的质量 | 低分辨率显微镜图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 配对的电子显微镜高分辨率和低分辨率图像测试数据集 |