深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24840 篇文献,本页显示第 6441 - 6460 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
6441 2025-03-20
Histogram matching-enhanced adversarial learning for unsupervised domain adaptation in medical image segmentation
2025-Mar-18, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于直方图匹配增强的对抗学习方法(HMeAL-UDA),用于医学图像分割中的无监督域适应,并提供了模型预测的全面不确定性估计 提出了一种新的对抗学习方法,结合直方图匹配策略来减少模型复杂性并提高跨模态特征对齐的效果,同时通过蒙特卡洛dropout量化模型预测的不确定性 方法主要关注分割精度,虽然提供了不确定性估计,但未深入探讨其在临床决策中的具体应用 开发一种简单有效的无监督域适应方法,用于医学图像分割,并提供模型预测的不确定性估计 跨模态医学图像分割 医学图像分割 NA 对抗学习、直方图匹配、蒙特卡洛dropout 对抗学习模型 医学图像(MRI和CT) 30 MRI扫描(20来自CHAOS数据集,10来自内部数据集)和30 CT扫描(来自BTCV数据集),以及240 CT扫描和60 MRI扫描(来自AMOS数据集)
6442 2025-03-20
Magnetic resonance image generation using enhanced TransUNet in Temporomandibular disorder patients
2025-Mar-18, Dento maxillo facial radiology
研究论文 本研究开发了一种基于Transformer的深度学习模型,用于从质子密度加权图像生成T2加权图像,以减少颞下颌关节紊乱患者的MRI扫描时间 采用TransUNet架构的生成对抗网络框架,并集成椎间盘分割解码器以提高图像质量 NA 开发一种深度学习模型以减少颞下颌关节紊乱患者的MRI扫描时间 颞下颌关节紊乱患者 计算机视觉 颞下颌关节紊乱 MRI TransUNet, GAN 图像 178名患者的7,226张图像
6443 2025-03-20
A deep learning model based on chest CT to predict benign and malignant breast masses and axillary lymph node metastasis
2025-Mar-17, Biomolecules & biomedicine
研究论文 本研究开发了一种基于胸部CT的深度学习模型,用于预测乳腺肿块的良恶性及腋窝淋巴结转移 利用胸部CT图像开发深度学习模型,用于乳腺肿块的良恶性分类及腋窝淋巴结转移预测,减少了对昂贵后续检查的需求 研究为回顾性设计,样本量相对较小,且仅使用了非增强胸部CT图像 提高乳腺病变的初步评估准确性,减少对昂贵后续检查的需求 482名乳腺肿块患者 计算机视觉 乳腺癌 胸部CT成像 ResNet-34, ResNet-50, ResNet-101 图像 482名患者(良性224例,恶性258例,其中腋窝淋巴结转移阳性91例,阴性167例)
6444 2025-03-20
A Novel Artificial Intelligence Approach to Kennedy Classification for Partially Edentulous Patients Using Panoramic Radiographs
2025-Mar-13, The European journal of prosthodontics and restorative dentistry
研究论文 本研究旨在开发一种人工智能系统,用于从全景X光片中自动分类部分缺牙弓,并识别现有牙齿以进行自动报告 使用YOLOv8s深度学习模型进行牙齿检测,并结合Kennedy分类系统和Applegate规则进行部分缺牙弓的自动分类 数据集仅包含公开可用的全景X光片,可能无法涵盖所有临床情况 开发一种人工智能系统,用于自动分类部分缺牙弓并识别现有牙齿 部分缺牙患者 计算机视觉 NA 深度学习 YOLOv8s 图像 5261张匿名数字全景X光片,其中1875张高质量图像用于训练、验证和测试
6445 2025-03-20
Detection of Anomalies in Data Streams Using the LSTM-CNN Model
2025-Mar-06, Sensors (Basel, Switzerland)
研究论文 本文对应用于数据流异常检测的深度学习方法进行了比较分析,并评估了创新的LSTM-CNN方法的效果 提出了创新的LSTM-CNN方法,并证明其在数据流异常检测中的有效性 仅使用了Yahoo! Webscope S5数据集进行实验,未在其他数据集上验证 比较不同深度学习模型在数据流异常检测中的性能 数据流中的异常检测 机器学习 NA NA LSTM, LSTM autoencoder, LSTM-CNN 数据流 Yahoo! Webscope S5数据集
6446 2025-03-20
Landsat Time Series Reconstruction Using a Closed-Form Continuous Neural Network in the Canadian Prairies Region
2025-Mar-06, Sensors (Basel, Switzerland)
研究论文 本研究探讨了在加拿大草原地区使用封闭式连续深度神经网络(CFC)与循环神经网络(RNN)结合的CFC-mmRNN模型,用于重建1985年至今的Landsat时间序列 提出了一种新的CFC-mmRNN模型,显著提高了Landsat时间序列重建的准确性,相比传统方法在光谱波段上的精度提升了33%至42% 研究主要针对加拿大草原地区,可能在其他地理区域的适用性有待验证 提高Landsat时间序列重建的准确性,以支持更广泛的环境监测和预测应用 Landsat时间序列数据 遥感 NA 封闭式连续深度神经网络(CFC)与循环神经网络(RNN)结合 CFC-mmRNN 卫星图像 1985年至今的Landsat时间序列数据
6447 2025-03-20
YOLO-ACE: Enhancing YOLO with Augmented Contextual Efficiency for Precision Cotton Weed Detection
2025-Mar-06, Sensors (Basel, Switzerland)
研究论文 本文提出了一种名为YOLO-ACE的改进模型,用于提高棉花田中杂草检测的精度和效率 YOLO-ACE通过集成上下文增强模块(CAM)和选择性核注意力机制(SKAttention),以及解耦检测头,提升了多尺度特征捕捉和动态调整感受野的能力 NA 提高棉花田中杂草检测的精度和效率,以满足现代农业杂草管理的严格要求 棉花田中的杂草 计算机视觉 NA 深度学习 YOLOv5s的改进版YOLO-ACE 图像 CottonWeedDet12 (CWD12) 数据集和CropWeed数据集
6448 2025-03-20
Quality of Experience (QoE) in Cloud Gaming: A Comparative Analysis of Deep Learning Techniques via Facial Emotions in a Virtual Reality Environment
2025-Mar-05, Sensors (Basel, Switzerland)
研究论文 本文比较了在虚拟现实环境中通过玩家面部表情评估云游戏体验质量(QoE)的深度学习技术 提出了一种基于卷积神经网络(CNN)架构的EmotionNET模型技术,用于通过面部表情评估云游戏体验质量,并与ConvoNEXT、EfficientNET和Vision Transformer(ViT)等其他深度学习技术进行了比较 传统评估方法未能准确捕捉用户的实际体验质量,部分用户对提供反馈不认真,即使服务符合SLA,部分玩家仍声称未收到承诺的服务 提高云游戏用户的体验质量(QoE) 云游戏玩家 计算机视觉 NA 深度学习(DL) CNN, ConvoNEXT, EfficientNET, Vision Transformer (ViT) 面部表情数据 自定义数据集,EmotionNET模型训练准确率为98.9%,验证准确率为87.8%
6449 2025-03-20
Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning
2025-Mar-04, Sensors (Basel, Switzerland)
研究论文 本研究提出了一种基于混合采样和深度学习的增强型网络入侵检测模型TRBMA,旨在解决现有模型在时间特征学习不完整和恶意流量分类准确率低的问题 TRBMA模型结合了Temporal Convolutional Networks (TCNs)、Bidirectional Gated Recurrent Units (BiGRUs)和Multi-Head Self-Attention机制,改进了ResNet18架构,并引入了AdamW优化器以提高模型训练的收敛速度和泛化能力 NA 提高网络入侵检测模型的准确率,特别是对恶意流量类型的识别 网络流量数据,特别是恶意流量类型 机器学习 NA 深度学习 1D-TCN-ResNet-BiGRU-Multi-Head Attention (TRBMA) 时间序列数据 CIC-IDS-2017数据集
6450 2025-03-20
Closing Gaps in Diabetic Retinopathy Screening in India Using a Deep Learning System
2025-Mar-03, JAMA network open IF:10.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
6451 2025-03-20
Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From 18F-FDG PET/CT Based on Interpretable Machine Learning
2025-03, Academic radiology IF:3.8Q1
研究论文 本研究旨在开发并评估一种结合临床、放射组学和深度学习特征的机器学习模型,用于预测非小细胞肺癌(NSCLC)患者的淋巴结转移(LNM),并通过Shapley加性解释(SHAP)增强模型的可解释性 结合临床、放射组学和深度学习特征,使用SHAP增强模型的可解释性,显著提高了NSCLC患者淋巴结转移预测的准确性 样本量相对较小,仅包含248名NSCLC患者,可能影响模型的泛化能力 开发并评估一种机器学习模型,用于预测NSCLC患者的淋巴结转移 248名接受术前PET/CT扫描的NSCLC患者 数字病理学 肺癌 PET/CT成像 XGBoost 图像 248名NSCLC患者
6452 2025-03-20
Status and Opportunities of Machine Learning Applications in Obstructive Sleep Apnea: A Narrative Review
2025-Mar-01, medRxiv : the preprint server for health sciences
综述 本文综述了2018年至2023年间发表的254篇科学出版物,探讨了机器学习在阻塞性睡眠呼吸暂停(OSA)研究中的应用现状和机会 本文首次系统地评估了机器学习在OSA研究中的应用,包括诊断、治疗优化和生物标志物开发等多个方面,并指出了当前研究中的不足和未来改进方向 研究队列主要为超重男性,女性、年轻肥胖成年人、60岁以上个体和不同种族群体的代表性不足,许多研究样本量小且模型验证不够稳健 评估机器学习在阻塞性睡眠呼吸暂停(OSA)研究中的应用现状和机会 阻塞性睡眠呼吸暂停(OSA)患者 机器学习 阻塞性睡眠呼吸暂停 NA 深度学习, 支持向量机 多导睡眠图, 心电图数据, 可穿戴设备数据 254篇科学出版物
6453 2025-03-20
Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review
2025-Mar-01, Journal of clinical medicine IF:3.0Q1
系统综述 本文系统综述了人工智能(AI)在急性早幼粒细胞白血病(APL)中的应用潜力 首次全面评估AI、机器学习和深度学习在APL中的应用前景 仅基于20篇文献进行定性分析,样本量有限 评估AI、机器学习和深度学习在APL诊断、评估和管理中的潜在应用 急性早幼粒细胞白血病(APL) 机器学习 白血病 荧光原位杂交(FISH)、聚合酶链反应(PCR) 机器学习(ML)、深度学习(DL) 常规生物学参数、细胞形态学、流式细胞术、OMICS数据 20篇文献
6454 2025-03-19
Single-Model Self-Recovering Fringe Projection Profilometry Absolute Phase Recovery Method Based on Deep Learning
2025-Mar-01, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于深度学习的单模型自恢复条纹投影轮廓术绝对相位恢复方法 结合深度学习技术与自恢复算法,简化了相位检索和相位展开的复杂过程,无需额外模式辅助即可直接处理高分辨率条纹图像 NA 实现高效且准确的高分辨率绝对相位恢复 条纹投影轮廓术中的绝对相位恢复 计算机视觉 NA 深度学习 Fringe Prediction Self-Recovering network 图像 NA
6455 2025-03-20
Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions
2025-Mar, Journal of pharmaceutical analysis IF:6.1Q1
综述 本文综述了人工智能在药物开发中的应用,特别是在药物-靶点预测方面的作用 系统地编译和评估了用于药物及药物组合-靶点预测的AI算法,强调了它们的理论框架、优势和局限性 未具体提及研究的局限性 探讨人工智能在药物开发中的应用,特别是在药物-靶点预测方面的作用 药物-靶点相互作用 生物医学 NA 人工智能(AI) 卷积神经网络(CNNs)、图卷积网络(GCNs)、变换器(transformers) 生物数据 NA
6456 2025-03-20
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain
2025-Feb-28, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于深度学习的方法,通过分析视频中的时空域来量化大气湍流强度 使用深度学习模型从视频中提取时空特征来量化大气湍流强度,这是一种新颖的方法 实验在受控环境下进行,可能无法完全反映真实世界中的复杂湍流情况 量化大气湍流强度 视频中捕捉到的静态图像在不同湍流强度下的表现 计算机视觉 NA 深度学习 CNN 视频 NA
6457 2025-03-20
An Efficient and Low-Complexity Transformer-Based Deep Learning Framework for High-Dynamic-Range Image Reconstruction
2025-Feb-28, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于Transformer的高动态范围(HDR)图像重建框架,旨在在降低计算成本的同时实现与现有技术相媲美的结果 通过减少自注意力块的数量并引入卷积块注意力模块(CBAM),在保持图像质量的同时显著降低了计算复杂度 未提及具体的数据集规模或实验环境的限制 开发一种高效且低复杂度的HDR图像重建方法 高动态范围图像 计算机视觉 NA 深度学习 Transformer, 卷积块注意力模块(CBAM) 图像 在两个数据集上进行了评估,具体样本数量未提及
6458 2025-03-20
A Review of Research on SLAM Technology Based on the Fusion of LiDAR and Vision
2025-Feb-27, Sensors (Basel, Switzerland)
综述 本文综述了基于LiDAR和视觉融合的SLAM技术研究现状,分析了早期单传感器SLAM技术和当前LiDAR与视觉融合SLAM的主要研究成果和发现 通过融合深度学习和自适应算法,LiDAR与视觉传感器的有效融合在处理多种情况时表现出高效性 在特征稀缺(低纹理、重复结构)环境场景和动态环境中的局限性 为LiDAR和视觉融合的SLAM技术发展提供指导和见解,为进一步的SLAM技术研究提供参考 SLAM技术,特别是基于LiDAR和视觉融合的SLAM技术 计算机视觉 NA LiDAR与视觉传感器融合 深度学习 3D空间信息,图像数据 NA
6459 2025-03-20
Deep Learning Based Pile-Up Correction Algorithm for Spectrometric Data Under High-Count-Rate Measurements
2025-Feb-27, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于深度学习的堆积校正算法,用于高计数率测量下的光谱数据 提出了一种新颖的深度学习框架,结合计数率信息和2D注意力U-Net进行能量谱恢复 训练数据基于开源模拟器生成,可能无法完全反映真实场景 解决高计数率测量下的堆积效应问题,提高光谱数据的准确性 伽马射线光谱数据 机器学习 NA 深度学习 2D注意力U-Net 光谱数据 基于公开的伽马光谱数据库生成的训练数据
6460 2025-03-20
Energy-Efficient Dynamic Workflow Scheduling in Cloud Environments Using Deep Learning
2025-Feb-26, Sensors (Basel, Switzerland)
研究论文 本文提出了一种新的调度框架,结合图神经网络(GNN)和深度强化学习(DRL),使用近端策略优化(PPO)算法,在云环境中实现动态工作流调度,以最小化完成时间和减少能耗 结合图神经网络(GNN)和深度强化学习(DRL)进行多目标优化,专注于最小化完成时间和减少能耗 研究基于模拟环境(CloudSim)和合成数据集,未在实际云环境中验证 在云环境中实现动态工作流调度,优化完成时间和能耗 云环境中的动态工作流调度 机器学习 NA 图神经网络(GNN)、深度强化学习(DRL)、近端策略优化(PPO) GNN、DRL、PPO 合成数据集 模拟环境中的基准数据集
回到顶部