本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6501 | 2025-02-19 |
Multimodal deep learning: tumor and visceral fat impact on colorectal cancer occult peritoneal metastasis
2025-Feb-17, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11450-2
PMID:39961863
|
研究论文 | 本研究提出了一种多模态深度学习方法,用于研究肿瘤和内脏脂肪对结直肠癌隐匿性腹膜转移的影响 | 基于ResNet18构建的多尺度特征融合网络(MSFF-Net)能够利用CT图像中的肿瘤和内脏脂肪特征来检测结直肠癌的隐匿性腹膜转移 | 研究主要依赖于术前CT扫描数据,可能无法涵盖所有相关临床信息 | 研究结直肠癌患者中肿瘤和内脏脂肪对隐匿性腹膜转移的影响 | 结直肠癌患者 | 数字病理学 | 结直肠癌 | CT扫描 | ResNet18, 随机森林分类器 | 图像 | 内部和外部测试集的结直肠癌患者 |
6502 | 2025-02-19 |
Automatic future remnant segmentation in liver resection planning
2025-Feb-17, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03331-2
PMID:39961898
|
研究论文 | 本研究提出了一种新的自动化肝脏切除规划方法,利用CT扫描中的肝脏、血管和肿瘤分割来预测未来肝脏残余(FLR),旨在提高术前规划的准确性和患者预后 | 提出了结合深度卷积网络和Transformer网络的自动化FLR分割方法,显著提高了术前规划的准确性和一致性 | 需要进一步研究以探索该方法在临床工作流程中的无缝集成 | 提高肝脏切除术前规划的准确性和患者预后 | 肝脏、血管和肿瘤的CT扫描图像 | 计算机视觉 | 肝癌 | CT扫描 | 深度卷积网络和Transformer网络 | 图像 | 未明确提及样本数量 |
6503 | 2025-02-19 |
Precise dental caries segmentation in X-rays with an attention and edge dual-decoder network
2025-Feb-17, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03318-w
PMID:39961911
|
研究论文 | 本文提出了一种名为AEDD-Net的新型网络,结合注意力机制和双解码器结构,以提高龋齿边界分割的性能 | AEDD-Net集成了空洞空间金字塔池化和交叉坐标注意力机制,有效融合全局和多尺度特征,并引入了专门的边界生成模块和创新边界损失函数 | NA | 提高龋齿边界分割的准确性 | 龋齿的X射线图像 | 计算机视觉 | 龋齿 | 深度学习 | AEDD-Net | 图像 | NA |
6504 | 2025-02-19 |
Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD
2025-Feb-17, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03311-3
PMID:39961912
|
研究论文 | 本文提出了一种使用深度学习快速预测主动脉瘤壁面剪应力的方法,作为计算流体动力学的快速替代方案 | 提出了一种名为MultiViewUNet的深度学习替代模型,采用领域转换技术将复杂的主动脉几何形状转换为与先进神经网络兼容的表示,以快速预测时间平均壁面剪应力分布 | 未提及具体局限性 | 开发一种快速且准确的主动脉瘤壁面剪应力预测方法,以支持临床决策 | 腹主动脉瘤(AAA) | 机器学习 | 心血管疾病 | 深度学习 | MultiViewUNet | 几何数据 | 真实和合成的AAA几何数据 |
6505 | 2025-02-19 |
Single Cell Inference of Cancer Drug Response Using Pathway-Based Transformer Network
2025-Feb-17, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202400991
PMID:39962810
|
研究论文 | 本文提出了一种基于Transformer的深度学习模型scPDS,用于从单细胞RNA测序数据中预测癌症药物敏感性 | 开发了scPDS模型,通过通路激活转换从单细胞RNA测序数据中预测药物敏感性,整合了大批量RNA测序数据以提高准确性和计算效率 | 未明确提及具体局限性 | 提高癌症药物反应的预测准确性,优化个性化治疗方案 | 乳腺癌细胞 | 机器学习 | 乳腺癌 | 单细胞RNA测序(scRNA-seq) | Transformer | RNA测序数据 | 未明确提及具体样本数量 |
6506 | 2025-02-19 |
Harnessing the synergy of statistics and deep learning for BCI competition 4 dataset 4: a novel approach
2025-Feb-15, Brain informatics
DOI:10.1186/s40708-025-00250-5
PMID:39954182
|
研究论文 | 本文提出了一种结合统计分析和深度学习的创新方法,用于处理BCI竞赛4数据集4中的ECoG信号,以识别手指运动模式 | 结合统计分析预处理数据,并设计了一个新的神经网络模型BC4D4,该模型在BCI竞赛4数据集4上取得了优于现有技术的性能 | NA | 提高从ECoG信号中识别手指运动模式的准确性和效率 | BCI竞赛4数据集4中的ECoG信号 | 机器学习 | NA | ECoG信号处理 | CNN(卷积神经网络)和Dense神经网络 | ECoG信号 | BCI竞赛4数据集4 |
6507 | 2025-02-19 |
DeepFlood for Inundated Vegetation High-Resolution Dataset for Accurate Flood Mapping and Segmentation
2025-Feb-15, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04554-3
PMID:39955285
|
研究论文 | 本文介绍了DeepFlood,一个用于洪水映射和分割的高分辨率数据集,旨在提高洪水范围的快速准确评估 | DeepFlood是一个包含高分辨率载人和无人机航拍图像以及合成孔径雷达(SAR)图像的新数据集,特别标注了淹没植被,这是洪水映射中最具挑战性的区域之一 | NA | 提高洪水范围的快速准确评估,以支持有效的灾害响应、减灾规划和资源分配 | 洪水映射和分割 | 计算机视觉 | NA | 卷积神经网络(CNNs) | CNN | 图像 | NA |
6508 | 2025-02-19 |
Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series
2025-Feb-15, NPJ systems biology and applications
IF:3.5Q1
DOI:10.1038/s41540-025-00489-y
PMID:39955293
|
研究论文 | 本文介绍了一种名为DeepSpiro的深度学习新方法,旨在通过肺活量时间序列早期预测慢性阻塞性肺疾病(COPD)的未来风险 | DeepSpiro方法结合了SpiroSmoother、SpiroEncoder、SpiroExplainer和SpiroPredictor四个关键组件,能够通过关键斑块的凹度预测未诊断的高风险患者的疾病风险,预测时间跨度可达1-5年甚至更长 | NA | 早期预测慢性阻塞性肺疾病(COPD)的未来风险 | 肺活量时间序列数据 | 机器学习 | 慢性阻塞性肺疾病 | 深度学习 | DeepSpiro | 时间序列数据 | UK Biobank数据集 |
6509 | 2025-02-19 |
Exploration of contemporary modernization in UWSNs in the context of localization including opportunities for future research in machine learning and deep learning
2025-Feb-15, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-89916-y
PMID:39955359
|
综述 | 本文探讨了水下无线传感器网络(UWSNs)中的定位技术现代化,包括机器学习与深度学习在未来研究中的机遇 | 本文不仅回顾了UWSNs定位技术的基础与挑战,还探讨了机器学习和深度学习在提升定位过程中的潜在贡献,并提出了未来研究方向 | 本文主要基于理论分析和模拟评估,缺乏实际应用场景的验证 | 提升水下无线传感器网络中的定位技术,以支持环境监测、灾害管理、军事监视等应用 | 水下无线传感器网络(UWSNs)中的节点定位 | 机器学习 | NA | 机器学习(ML)、深度学习(DL) | NA | 模拟数据 | NA |
6510 | 2025-02-19 |
Machine learning via DARTS-Optimized MobileViT models for pancreatic Cancer diagnosis with graph-based deep learning
2025-Feb-15, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-02923-x
PMID:39955532
|
研究论文 | 本研究提出了一种结合图数据表示和DARTS优化的MobileViT模型的新方法,旨在提高胰腺癌诊断的准确性和可靠性 | 创新点在于将图数据表示与DARTS优化的MobileViT模型结合,动态调整架构,并通过多种机器学习算法进一步提升分类准确性 | 未提及具体局限性 | 提高胰腺癌诊断的准确性和可靠性 | 胰腺CT图像 | 计算机视觉 | 胰腺癌 | Harris角点检测算法、DARTS优化、KNN、SVM、RF、XGBoost | MobileViTv2_150、MobileViTv2_200、CNN、Vision Transformer | 图像 | 未提及具体样本数量 |
6511 | 2025-02-19 |
Enhancing pediatric congenital heart disease detection using customized 1D CNN algorithm and phonocardiogram signals
2025-Feb-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42257
PMID:39959496
|
研究论文 | 本研究提出了一种定制的1D卷积神经网络(1D-CNN),用于将心音图(PCG)信号分类为正常或异常,为先天性心脏病(CHD)的诊断提供了一种自动化且高效的解决方案 | 结合现代信号处理与深度学习,提出了一种定制的1D-CNN模型,用于CHD的自动检测,显著提高了诊断的准确性和可靠性 | 数据集变异性和噪声问题仍然存在,未来需要扩展到多类分类并评估在更广泛医疗问题上的表现 | 提高先天性心脏病的早期检测效率,提供一种自动化诊断方法 | 心音图(PCG)信号 | 数字病理 | 先天性心脏病 | 低通和高通滤波(60-650 Hz)、重采样、降噪、数据增强技术(分块、填充、音高变换) | 1D-CNN | 信号 | 本地儿科PCG信号和公开可访问的数据集 |
6512 | 2025-02-19 |
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement
2025-Feb-14, Bioelectronic medicine
DOI:10.1186/s42234-025-00166-9
PMID:39948616
|
研究论文 | 本文通过体内电生理记录和计算模型预测章鱼手臂运动 | 首次使用碳电极阵列进行单单位电生理记录,结合机器学习模型预测章鱼手臂运动类型 | 研究仅限于章鱼前神经索,未涉及其他神经回路或更复杂的运动模式 | 揭示运动回路和控制原理,预测行为 | 章鱼前神经索和手臂运动 | 机器学习 | NA | 单单位电生理记录 | 深度学习模型 | 电生理数据 | NA |
6513 | 2025-02-19 |
Optimal surface defect detector design based on deep learning for 3D geometry
2025-Feb-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88112-2
PMID:39952973
|
研究论文 | 本文提出了一种基于深度学习的3D几何表面缺陷检测器设计方法,用于钢铁制造环境中的自动检测 | 通过几何变换生成数据集,并提出了基于性能的模型优化算法,解决了现有方法中图像数据曲率问题和2D产品的局限性 | 研究仅针对3D几何产品,未涉及其他类型的钢铁产品 | 开发一种适用于钢铁制造环境的自动表面缺陷检测方法 | 钢铁制造环境中的3D几何产品 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
6514 | 2025-02-19 |
Model-constrained deep learning for online fault diagnosis in Li-ion batteries over stochastic conditions
2025-Feb-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56832-8
PMID:39952987
|
研究论文 | 本文采用深度学习方法开发了一种适用于锂离子电池在不可预测条件下运行的在线故障诊断网络 | 网络集成了电池模型约束,并采用了一个框架来管理随机系统的演化,从而实现故障的实时确定 | NA | 探索深度学习在电池实时预测和诊断中的应用,以提高电池安全性和经济效益 | 锂离子电池 | 机器学习 | NA | 深度学习 | NA | 电池运行数据 | 来自515辆车的1820万条有效数据 |
6515 | 2025-02-19 |
Multi-step ahead forecasting of daily streamflow based on the transform-based deep learning model under different scenarios
2025-Feb-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-89837-w
PMID:39953056
|
研究论文 | 本文介绍了一种基于相对位置编码增强的Informer模型(Rel-Informer),用于多步径流预测,并与标准Informer、Transformer和LSTM模型进行比较 | 提出了相对位置编码增强的Informer模型(Rel-Informer),并在不同情景下验证其多步径流预测能力 | 区域建模的精度低于个体建模,尽管通过微调有所改善 | 研究多步径流预测的深度学习模型在不同情景下的表现 | 径流预测 | 机器学习 | NA | 深度学习 | Rel-Informer, Informer, Transformer, LSTM | 径流数据 | 使用公开的CAMELS数据集进行训练和验证 |
6516 | 2025-02-19 |
Deep learning-assisted screening and diagnosis of scoliosis: segmentation of bare-back images via an attention-enhanced convolutional neural network
2025-Feb-14, Journal of orthopaedic surgery and research
IF:2.8Q1
DOI:10.1186/s13018-025-05564-y
PMID:39953540
|
研究论文 | 本文开发了一种基于深度学习的图像分割模型,用于提高脊柱侧弯筛查的效率 | 在U-Net架构中引入了注意力机制,构建了Dual AttentionUNet模型,用于图像分割,并通过计算机视觉算法计算背部不对称指数来分类脊柱侧弯的严重程度 | 研究样本量相对较小,且仅使用了背部图像和X光片数据 | 提高脊柱侧弯筛查的效率和准确性 | 350名脊柱侧弯患者和108名健康受试者 | 计算机视觉 | 脊柱侧弯 | 深度学习 | Dual AttentionUNet | 图像 | 458名受试者(350名患者和108名健康受试者) |
6517 | 2025-02-19 |
MultiT2: A Tool Connecting the Multimodal Data for Bacterial Aromatic Polyketide Natural Products
2025-Feb-11, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.4c11266
PMID:39959056
|
研究论文 | 本文介绍了一种名为MultiT2的算法,用于整合细菌芳香聚酮类天然产物的多模态数据 | 首次在天然产物领域应用多模态算法整合生物学相关但数学上不同的数据集,以重组知识图谱 | 由于天然产物数据的高度碎片化,整合多模态数据具有挑战性 | 提高天然产物科学的研究效率,特别是在克服繁琐和耗时的过程方面 | 细菌芳香聚酮类天然产物 | 机器学习 | NA | 深度学习 | NA | 多模态数据 | NA |
6518 | 2025-02-19 |
Diagnosis of Chronic Kidney Disease Using Retinal Imaging and Urine Dipstick Data: Multimodal Deep Learning Approach
2025-Feb-07, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/55825
PMID:39924305
|
研究论文 | 本研究评估了结合视网膜图像和尿液试纸数据的深度学习模型在慢性肾病诊断中的效果 | 创新点在于首次将视网膜图像和尿液试纸数据结合,开发了多模态深度学习模型(eGFR-MMDL),用于慢性肾病的非侵入性筛查 | 模型在65岁及以上年龄组的表现有限,仍需常规血液检测 | 评估结合视网膜图像和尿液试纸数据的深度学习模型在慢性肾病诊断中的效果 | 20-79岁的参与者,包括开发集(65,082人)和外部验证集(58,284人) | 数字病理学 | 慢性肾病 | 深度学习 | Wide Residual Networks | 图像和尿液试纸数据 | 开发集65,082人,外部验证集58,284人 |
6519 | 2025-02-19 |
Development and validation of a deep learning model for morphological assessment of myeloproliferative neoplasms using clinical data and digital pathology
2025-Feb, British journal of haematology
IF:5.1Q1
DOI:10.1111/bjh.19938
PMID:39658953
|
研究论文 | 本文开发并验证了一种结合临床数据和数字病理学的深度学习模型,用于骨髓增生性肿瘤的形态学评估 | 提出了一种融合模型,结合了骨髓全切片图像的深度学习模型和临床参数模型,提高了骨髓增生性肿瘤的诊断准确性 | 模型在外部验证队列中的表现可能受到数据来源和质量的限制 | 提高骨髓增生性肿瘤的病理评估准确性 | 骨髓增生性肿瘤(MPNs)患者 | 数字病理学 | 骨髓增生性肿瘤 | 深度学习 | 融合模型(深度学习模型+临床模型) | 图像(骨髓全切片图像)和临床数据 | 1051名MPN和非MPN患者 |
6520 | 2025-02-19 |
Arthroscopy-validated Diagnostic Performance of 7-Minute Five-Sequence Deep Learning Super-Resolution 3-T Shoulder MRI
2025-Feb, Radiology
IF:12.1Q1
DOI:10.1148/radiol.241351
PMID:39964264
|
研究论文 | 本研究验证了7分钟三倍并行成像加速的深度学习超分辨率3-T肩部MRI在诊断肩部疾病中的临床效果 | 首次通过关节镜检查验证了深度学习超分辨率MRI在肩部疾病诊断中的良好性能 | 研究为回顾性研究,样本量相对较小(121名成人) | 验证7分钟三倍并行成像加速的深度学习超分辨率3-T肩部MRI的临床诊断效果 | 患有肩部疼痛的成人患者 | 医学影像 | 肩部疾病 | 深度学习超分辨率MRI | 深度学习 | MRI图像 | 121名成人(平均年龄55岁,75名男性) |