深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29817 篇文献,本页显示第 641 - 660 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
641 2025-08-06
Outcomes of Residency Education: Insights Into the Professional Formation of the Physical Therapist Resident
2024-Sep-01, Journal, physical therapy education
研究论文 本研究探讨了物理治疗住院医师教育对临床技能、知识和推理能力发展的影响 首次通过定性研究探索住院医师教育中的关键教学要素和学习环境 样本量较小(11个项目和13名住院医师),且采用便利抽样方法 探索物理治疗住院医师教育的成果及其对专业形成的影响 物理治疗住院医师及其教育项目 医学教育 NA 定性案例研究 NA 访谈记录和日记条目 11个物理治疗住院医师项目和13名住院医师
642 2025-08-06
Neural Network Enables High Accuracy for Hepatitis B Surface Antigen Detection with a Plasmonic Platform
2024-07-17, Nano letters IF:9.6Q1
研究论文 本文介绍了一种基于无标记等离子体生物传感方法和监督深度学习的策略,用于高精度检测乙型肝炎表面抗原(HBsAg) 结合厚度敏感的等离子体耦合与神经网络监督深度学习,显著提高了检测的准确性和灵敏度,并将检测时间缩短至约30分钟 NA 开发高精度的分子检测工具,用于即时检测(POC)应用 乙型肝炎表面抗原(HBsAg) 机器学习 乙型肝炎 无标记等离子体生物传感方法 神经网络 NA NA
643 2025-08-06
Deconvolution of polygenic risk score in single cells unravels cellular and molecular heterogeneity of complex human diseases
2024-May-14, bioRxiv : the preprint server for biology
研究论文 介绍了一种名为scPRS的几何深度学习模型,用于构建单细胞水平的多基因风险评分(PRS),以增强复杂人类疾病的生物学发现和疾病预测 scPRS不仅预测疾病风险,还能揭示疾病相关细胞,并通过分层多组学分析识别细胞类型特异的遗传基础,将疾病相关遗传变异与相应细胞类型的基因调控联系起来 NA 开发一个多任务、可解释的框架,用于精确预测疾病并系统研究复杂疾病的遗传、细胞和分子基础 复杂人类疾病(如2型糖尿病、肥厚型心肌病和阿尔茨海默病)的单细胞数据 机器学习 2型糖尿病, 肥厚型心肌病, 阿尔茨海默病 单细胞染色质可及性分析, 几何深度学习 几何深度学习模型 单细胞数据 NA
644 2025-08-06
Deep Learning-based Assessment of Facial Asymmetry Using U-Net Deep Convolutional Neural Network Algorithm
2024 Jan-Feb 01, The Journal of craniofacial surgery IF:1.0Q3
研究论文 本研究评估了基于深度卷积神经网络的计算机辅助诊断系统在检测面部不对称性方面的诊断性能,并与正畸医生的结果进行了比较 使用U-Net深度卷积神经网络算法开发了一个自动评估面部不对称性的CAD系统,并与传统方法进行了比较 仅使用了1020名患者的PA头影测量图像,样本量可能不足以覆盖所有面部不对称情况 评估基于DCNN的CAD系统在面部不对称性诊断中的性能 正畸患者的PA头影测量图像 计算机视觉 面部不对称 DCNN U-Net 图像 1020名患者的PA头影测量图像(训练集),25张PA头影测量图像(测试集)
645 2025-08-06
Development of AI-Based Diagnostic Algorithm for Nasal Bone Fracture Using Deep Learning
2024 Jan-Feb 01, The Journal of craniofacial surgery IF:1.0Q3
研究论文 开发了一种基于深度学习的AI算法,用于通过计算机断层扫描图像诊断鼻骨骨折 首次利用深度学习和人工智能技术开发出诊断鼻骨骨折的算法,实现了与医生诊断结果的高敏感性(100%)和特异性(77%) 目前仅处于算法开发的初步阶段,样本量有限,需要进一步验证和优化 开发AI算法以提高鼻骨骨折的诊断效率和准确性 鼻骨骨折患者的计算机断层扫描图像 数字病理学 鼻骨骨折 深度学习 深度学习模型(未指定具体类型) 图像(CT扫描) 未明确说明具体样本数量
646 2025-08-06
Diagnosis of Developmental Dysplasia of the Hip by Ultrasound Imaging Using Deep Learning
2023-Aug-01, Journal of pediatric orthopedics
研究论文 本研究探讨了使用深度学习模型通过超声图像诊断发育性髋关节发育不良(DDH)的准确性 首次将深度学习技术应用于DDH的超声图像诊断,并评估了多种预训练模型的性能 样本量相对较小(60名DDH患儿和131名健康婴儿),且研究为回顾性设计 评估人工智能通过深度学习在DDH超声图像诊断中的准确性 6个月以下疑似DDH的婴儿及其髋关节超声图像 数字病理 发育性髋关节发育不良 超声成像 SqueezeNet, MobileNet_v2, EfficientNet 图像 60名DDH患儿(64个髋关节)和131名健康婴儿(262个髋关节)
647 2025-08-06
Retracted: Evaluation of Ischemic Penumbra in Stroke Patients Based on Deep Learning and Multimodal CT
2023, Journal of healthcare engineering
retraction 该文章是对先前发表的一篇关于基于深度学习和多模态CT评估中风患者缺血半暗带研究的撤稿声明 NA NA NA NA NA NA NA NA NA NA
648 2025-08-06
SODA: Detecting COVID-19 in Chest X-Rays With Semi-Supervised Open Set Domain Adaptation
2022 Sep-Oct, IEEE/ACM transactions on computational biology and bioinformatics
研究论文 该论文提出了一种名为SODA的半监督开放集域适应方法,用于在胸部X光片中检测COVID-19 SODA方法在通用域空间和源数据与目标数据的共同子空间中对齐不同域的数据分布,解决了胸部X光数据集中的大域偏移和COVID-19胸部X光数据集规模较小的问题 COVID-19胸部X光数据集的规模相对较小 通过深度学习自动检测胸部X光片中的COVID-19疾病 胸部X光片 计算机视觉 COVID-19 深度学习 CNN, SODA 图像 NA
649 2025-08-06
Evaluation of Ischemic Penumbra in Stroke Patients Based on Deep Learning and Multimodal CT
2021, Journal of healthcare engineering
研究论文 本文提出了一种基于改进的全局注意力上采样U-Net模型的主次路径注意力补偿网络结构,用于急性缺血性卒中患者的多模态CT定量评估 提出主次路径注意力补偿网络结构,通过辅助路径网络生成宽松的辅助注意力补偿系数,以补偿主路径网络中可能的注意力系数错误 卒中病灶特征不明确,病灶边界与正常脑组织区分度差,影响分割性能 研究多模态CT在急性缺血性卒中患者侧支循环、缺血半暗带、核心梗死体积定量评估及静脉溶栓治疗预后评估中的价值 急性缺血性卒中患者 数字病理学 心血管疾病 多模态CT 改进的全局注意力上采样U-Net模型 图像 NA
650 2025-08-05
An adaptive mechanism of improved heuristic algorithm and multiscale feature integration with residual GRU for emotion with mental health recognition
2025-Dec, Cognitive neurodynamics IF:3.1Q2
研究论文 提出一种基于自适应深度学习模型的自动化系统,用于情感与心理健康识别 结合改进的启发式算法和多尺度特征融合的残差GRU模型,用于心理健康识别 未提及具体的数据集规模或实验环境的限制 通过自动化系统更精确地识别心理健康问题,以提供早期治疗建议 在线公开数据源中的文本数据 自然语言处理 心理健康疾病 BiLSTM-HA, TF-IDF, Glove嵌入, MFF-ARGRU, IRV-SOA BiLSTM, GRU 文本 NA
651 2025-08-05
LETA: Tooth Alignment Prediction Based on Dual-branch Latent Encoding
2025-09, IEEE transactions on visualization and computer graphics IF:4.7Q1
research paper 本文提出了一种基于双分支潜在编码的3D牙齿对齐预测系统LETA,用于自动预测牙齿的正确3D姿态变换 LETA的创新点在于从真实对齐的牙齿中提取特征以指导网络学习,并采用改进的点卷积操作和基于注意力的网络分别提取局部形状特征和全局上下文特征 NA 开发一种自动预测牙齿3D姿态变换的系统,以减少正畸医生的工作量 口腔内扫描仪(IOS)牙科表面中的分割个体3D牙齿网格 digital pathology NA 深度学习 双分支潜在编码网络 3D点云数据 9,868个IOS表面数据
652 2025-05-08
Letter to the Editor: Deep Learning and Numerical Analysis for Bladder Outflow Obstruction and Detrusor Underactivity Diagnosis in Men: A Novel Urodynamic Evaluation Scheme
2025-Sep, Neurourology and urodynamics IF:1.8Q3
NA NA NA NA NA NA NA NA NA NA NA NA
653 2025-07-19
Commentary on "Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study"
2025-Sep, Neurourology and urodynamics IF:1.8Q3
NA NA NA NA NA NA NA NA NA NA NA NA
654 2025-08-05
Predicting the Effects of Charge Mutations on the Second Osmotic Virial Coefficient for Therapeutic Antibodies via Coarse-Grained Molecular Simulations and Deep Learning Methods
2025-Aug-04, Molecular pharmaceutics IF:4.5Q1
研究论文 通过粗粒化分子模拟和深度学习方法预测电荷突变对治疗性抗体第二渗透维里系数的影响 结合粗粒化分子模拟和深度学习方法,探索大量潜在突变对蛋白质自相互作用的影响,并提出一种高效的预测算法 研究仅针对三种模型治疗性单克隆抗体,且突变范围限于单、双和三突变 评估改变表面电荷分布如何影响蛋白质自相互作用,以第二渗透维里系数量化 三种模型治疗性单克隆抗体(MAbs) 计算生物学 NA 粗粒化分子模拟,深度神经网络 MLP(多层感知机) 分子模拟数据 三种模型治疗性单克隆抗体,每种抗体探索约10^10个潜在突变
655 2025-08-05
Colorimetric detection of bisphenol A in water: a smartphone-based sensor using inverse opal molecularly imprinted photonic crystal hydrogel
2025-Aug-04, The Analyst
研究论文 本研究开发了一种基于智能手机的逆蛋白石分子印迹光子晶体水凝胶传感器,用于水中双酚A的灵敏和选择性检测 结合智能手机和深度学习模型,实现了实时、便携的双酚A定量检测 未提及在实际环境水样中的大规模验证 开发高灵敏度、高选择性的双酚A检测方法 水样中的双酚A分子 传感器技术 NA 分子印迹技术、光子晶体水凝胶制备 深度学习回归模型 图像 未明确说明具体样本数量
656 2025-08-05
Incorporating Artificial Intelligence into Fracture Risk Assessment: Using Clinical Imaging to Predict the Unpredictable
2025-Aug-04, Endocrinology and metabolism (Seoul, Korea)
综述 本文综述了人工智能在骨折风险评估中的应用,探讨了其在临床影像分析中的潜力与挑战 利用深度学习技术分析常规影像数据,实现个体化骨折风险评估,超越传统群体分层方法 模型泛化能力不足、数据偏差和自动化偏差等问题尚未解决 探索人工智能作为传统骨折风险评估方法的补充工具 骨质疏松性骨折的风险预测 数字病理学 骨质疏松症 深度学习 深度学习模型 影像数据(X光和CT) 多样化的队列研究
657 2025-08-05
Deep Learning Reconstruction for T2 Weighted Turbo-Spin-Echo Imaging of the Pelvis: Prospective Comparison With Standard T2-Weighted TSE Imaging With Respect to Image Quality, Lesion Depiction, and Acquisition Time
2025-Aug-04, Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
research paper 本研究比较了深度学习重建的T2加权快速自旋回波成像(DL-TSE)与传统TSE在盆腔MRI中的图像质量、病变描绘和采集时间 首次在盆腔MRI中全面评估DL-TSE的性能,并证明其能在减少50%扫描时间的同时保持或提升图像质量 样本量较小(55例),且仅评估了两种扫描平面(轴位和斜位) 评估深度学习加速技术在盆腔MRI中的应用效果 盆腔MRI扫描 医学影像分析 盆腔疾病 深度学习重建(DL)、Turbo Spin Echo(TSE) 深度学习模型(未指定具体架构) MRI图像 55名受试者(33名女性,22名男性)
658 2025-08-05
Accurate VLE Predictions via COSMO-RS-Guided Deep Learning Models: Solubility and Selectivity in Physical Solvent Systems for Carbon Capture
2025-Aug-04, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文开发了一种基于COSMO-RS和深度学习的机器学习流程,用于准确预测物理溶剂系统中的溶解度和选择性,以支持碳捕获应用中的溶剂筛选 结合量子化学热力学模型COSMO-RS和D-MPNN神经网络架构,利用分子表征、附加特征和迁移学习来改进预测,显著提高了单独使用COSMO的准确性 模型依赖于COSMO-RS模拟数据和实验数据的结合,可能受到数据量和质量的限制 开发一种准确预测物理溶剂系统中溶解度和选择性的方法,以支持碳捕获应用中的溶剂筛选和优化 物理溶剂系统中的溶解度和选择性 机器学习 NA COSMO-RS, D-MPNN D-MPNN 模拟数据和实验数据 30,000个COSMO-RS模拟数据点和实验VLE数据集
659 2025-08-05
"Computational Prediction of Mutagenicity Through Comprehensive Cell Painting Analysis"
2025-Aug-04, Mutagenesis IF:2.5Q3
研究论文 本研究利用Cell Painting数据和机器学习模型预测化学物质的致突变性,并与基于结构的模型进行比较 首次整合Cell Painting数据与机器学习算法预测致突变性,发现Phenotypic Altering Concentration能显著提高预测准确性 数据集存在固有局限性,且Cell Painting技术存在实验室间差异,某些化合物仍难以预测 开发基于Cell Painting的致突变性预测方法 化学化合物 机器学习 NA Cell Painting Random Forest, Support Vector Machine, Extreme Gradient Boosting 图像 Broad Institute数据集包含30,000多个分子,US-EPA数据集包含1,200种化学物质
660 2025-08-05
A Molecular Representation Learning Model Based on Multidimensional Joint and Cross-Learning for Drug-Drug Interaction Prediction
2025-Aug-04, Journal of chemical information and modeling IF:5.6Q1
research paper 提出了一种基于多维联合与交叉学习的分子表示学习模型,用于预测药物-药物相互作用 提出了一种新的多维联合与交叉学习模型(MDJCL),有效整合了药物的1D、2D和3D分子特征,并通过交叉注意力融合模块和分子对反应模块提升了预测性能 未提及具体的数据集规模或模型在真实临床环境中的验证情况 提升药物-药物相互作用(DDI)的预测性能,为临床决策和精准医学提供可靠工具 药物分子及其相互作用 machine learning NA deep learning MDJCL(多维联合与交叉学习模型) 分子特征数据(1D、2D、3D) NA
回到顶部