深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24567 篇文献,本页显示第 6621 - 6640 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
6621 2025-03-09
Latent Weight Quantization for Integerized Training of Deep Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种用于深度神经网络整数化训练的潜在权重量化方案,旨在减少量化对训练过程的扰动 首次提出了一种通用的整数化训练潜在权重量化方案,通过残差量化和优化的双量化器最小化量化扰动 未明确提及具体限制,但可能涉及硬件实现的复杂性和对不同架构的适应性 提高深度神经网络整数化训练的效率和性能 深度神经网络,包括ResNets、MobileNetV2和Transformers 机器学习 NA 残差量化和双量化器 ResNets, MobileNetV2, Transformers 图像和文本 未明确提及具体样本数量,但涉及多种架构和任务
6622 2025-03-09
Torsion Graph Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种新的图神经网络模型TorGNN,通过引入解析扭转来增强图神经网络对非欧几里得数据的分析能力 TorGNN模型创新性地使用解析扭转作为边权重,以捕捉图局部结构的拓扑信息,从而提升图神经网络的性能 NA 提升图神经网络在非欧几里得数据分析中的性能 图神经网络模型及其在链接预测和节点分类任务中的应用 机器学习 NA 解析扭转 图神经网络(GNN) 图数据 16种不同类型的网络用于链接预测任务,4种类型的网络用于节点分类任务
6623 2025-03-09
Characterizing diverse maize varieties under organic cultivation: phenotypic, yield, and canopy data from VIT Vellore
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了在有机栽培条件下不同玉米品种的表型、产量和冠层数据,旨在评估品种性能并促进作物改良 提供了有机栽培条件下八个玉米品种的详细数据集,包括表型、产量、冠层温度和叶绿素读数,为未来育种和深度学习模型构建提供了基础数据 研究仅基于单一地点的有机栽培数据,可能无法完全反映其他环境条件下的品种表现 评估不同玉米品种在有机栽培条件下的表现,为作物改良和育种提供数据支持 八个玉米品种,包括四个来自IIMR的新品种和四个本地栽培品种 农业科学 NA ANOVA (FRBD) NA 表型数据、产量数据、冠层温度数据、叶绿素数据 160株玉米植株(每个品种20株,每个重复5株)
6624 2025-03-09
Deep learning-based segmentation of the trigeminal nerve and surrounding vasculature in trigeminal neuralgia
2025-Mar-07, Journal of neurosurgery IF:3.5Q1
研究论文 本研究应用并评估了深度学习模型在三叉神经痛(TN)患者的术前MRI中分割三叉神经及其周围血管的性能,以量化神经和血管的解剖特征 首次使用基于U-Net的神经网络模型对三叉神经及其周围血管进行自动分割,并开发了定量和客观的影像学评估指标 研究样本量较小,仅包括50名TN患者,且数据来自单一机构,可能影响模型的泛化能力 开发并评估深度学习模型在三叉神经痛术前MRI中分割三叉神经及其周围血管的性能 三叉神经痛患者的术前MRI数据 数字病理学 三叉神经痛 MRI U-Net 图像 50名三叉神经痛患者的术前高分辨率MRI数据
6625 2025-03-09
Generalizable deep learning framework for 3D medical image segmentation using limited training data
2025-Mar-06, 3D printing in medicine IF:3.2Q1
研究论文 本文介绍了一种用于3D医学图像分割的深度学习框架,该框架在有限训练数据下仍能实现高性能 该框架克服了对大量数据和强大GPU资源的需求,适用于资源受限的医疗环境 尽管在多种临床应用中表现良好,但具体在不同医疗环境中的实际应用效果仍需进一步验证 开发一种适用于资源受限环境的3D医学图像分割深度学习框架 涉及骨科、眼眶分割、下颌骨CT、心脏CT、胎儿MRI和肺部CT的六种不同临床应用 数字病理 NA 深度学习 NA 3D医学图像 少量受试者
6626 2025-03-09
Leveraging deep neural network and language models for predicting long-term hospitalization risk in schizophrenia
2025-Mar-05, Schizophrenia (Heidelberg, Germany)
研究论文 本研究开发了一种深度学习模型,通过整合入院时的人口统计、行为和血液检测数据,预测精神分裂症患者的长期住院风险 利用语言模型高效提取非结构化电子健康记录数据,结合多模态特征显著提高预测性能,并通过综合可解释性分析和消融研究验证关键风险因素 研究基于回顾性队列,可能受到数据质量和完整性的限制 预测精神分裂症患者的长期住院风险,以优化资源分配和个体治疗计划 精神分裂症患者 自然语言处理 精神分裂症 深度学习 深度学习模型 人口统计、行为、血液检测数据 回顾性队列
6627 2025-03-09
A visual SLAM loop closure detection method based on lightweight siamese capsule network
2025-Mar-04, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于轻量级Siamese胶囊网络的视觉SLAM闭环检测方法,旨在解决传统方法在光照和视角变化下的敏感性问题 设计了一种新的胶囊网络特征提取器,并通过剪枝进一步减少参数数量,提高了算法的准确性和鲁棒性 未提及具体的数据集规模限制或计算资源需求 改进视觉SLAM系统中的闭环检测模块,减少机器人运动中的累积误差 视觉SLAM系统 计算机视觉 NA 深度学习 Siamese胶囊神经网络 图像 CityCentre数据集、New College数据集、KITTI数据集
6628 2025-03-09
Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy
2025-Mar, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本文介绍了一种利用深度学习增强的等离子体显微镜技术(Deep-SM),用于精确测量功能性化学和生物纳米颗粒的尺寸及碰撞检测 通过利用等离子体显微镜图像序列中独特的信号和噪声特征的时空相关性,Deep-SM能够增强信号检测并抑制噪声,从而实现对小至10纳米的生物纳米颗粒的动态成像和金属纳米颗粒电化学及量子耦合的碰撞检测 NA 开发一种高灵敏度且简单的方法,用于纳米颗粒分析,以应用于生物学、材料和能源等多个科学领域 功能性化学和生物纳米颗粒 计算机视觉 NA 等离子体显微镜 深度学习 图像序列 NA
6629 2025-03-09
Enhancement of phonocardiogram segmentation using convolutional neural networks with Fourier transform module
2025-Mar, Biomedical engineering letters IF:3.2Q2
研究论文 本研究提出了一种基于卷积傅里叶变换模块的深度学习分割方法,用于增强心音图(PCG)信号中第一和第二心音(S1和S2)的自动识别 引入了卷积傅里叶变换(CF)模块,能够区分心音和背景噪声,提高了心音分割的准确性和鲁棒性 未提及具体局限性 提高心音图信号中S1和S2心音的自动识别准确性,以支持心脏瓣膜疾病的检测 心音图(PCG)信号 数字病理学 心血管疾病 卷积傅里叶变换(CF)模块 CNN 信号数据 内部数据集、PhysioNet 2016数据集、PhysioNet 2022数据集和Asan Medical Center(AMC)数据集
6630 2025-03-09
Pathways to chronic disease detection and prediction: Mapping the potential of machine learning to the pathophysiological processes while navigating ethical challenges
2025-Mar, Chronic diseases and translational medicine
综述 本文综述了机器学习在慢性疾病检测和预测中的最新应用,涵盖了从传统技术到现代深度学习神经网络架构的主要方法 本文综合了机器学习在慢性疾病预测中的最新趋势和轨迹,为未来研究和临床转化提供了信息 本文指出了在实现可扩展、公平和临床可实施的机器学习解决方案方面仍需解决的关键挑战和限制 探索机器学习在慢性疾病早期检测和预测中的潜力 慢性疾病(如心脏病、癌症和糖尿病) 机器学习 慢性疾病 基因组学、转录组学、蛋白质组学、糖组学和脂质组学 逻辑回归、随机森林、深度学习神经网络 医学影像、基因组数据、可穿戴设备数据、电子健康记录 NA
6631 2025-03-09
A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks
2025-Feb-07, Micromachines IF:3.0Q2
研究论文 本文设计了一种用于合成孔径雷达(SAR)目标检测任务的低功耗、低延迟深度学习加速器,以实现在机载和卫星SAR平台上的实时目标检测 提出了一种适用于多维卷积并行计算的Process Engine(PE),并设计了独特的存储器排列方案,以提高FPGA的计算效率和内存读写效率 实验仅在Virtex 7 690t芯片上进行,未涉及其他硬件平台或更广泛的应用场景 解决当前GPU实时处理平台在机载或卫星应用中的功耗问题,实现SAR图像的实时目标检测 合成孔径雷达(SAR)图像 计算机视觉 NA 深度学习 CNN, Yolov5s 图像 52.19张512×512大小的SAR图像每秒
6632 2024-08-07
Author Response: Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis
2025-Jan-01, International journal of surgery (London, England)
NA NA NA NA NA NA NA NA NA NA NA NA
6633 2025-03-09
Elastography-based AI model can predict axillary status after neoadjuvant chemotherapy in breast cancer with nodal involvement: a prospective, multicenter, diagnostic study
2025-Jan-01, International journal of surgery (London, England)
研究论文 本研究开发了一种基于弹性成像的AI模型,用于预测乳腺癌患者在接受新辅助化疗后腋窝淋巴结的状态 结合剪切波弹性成像(SWE)和深度学习放射组学(DLR)模型,显著提高了预测腋窝淋巴结状态的准确性 研究样本量有限,且仅包括活检证实有淋巴结转移的乳腺癌患者 开发一个准确预测乳腺癌患者在接受新辅助化疗后腋窝淋巴结状态的模型 671名活检证实有淋巴结转移并接受新辅助化疗的乳腺癌患者 数字病理学 乳腺癌 剪切波弹性成像(SWE)和B型超声(BUS) 深度学习放射组学(DLR)模型 超声图像 671名乳腺癌患者
6634 2025-03-09
Identification of BCL11A, NTN5, and OGN as Diagnosis Biomarker of Papillary Renal Cell Carcinomas by Bioinformatic Analysis
2025, Journal of kidney cancer and VHL IF:1.9Q3
研究论文 本研究通过生物信息学和深度学习技术,识别出BCL11A、NTN5和OGN作为乳头状肾细胞癌(PRCC)的诊断生物标志物 首次将BCL11A、NTN5和OGN识别为PRCC的诊断生物标志物,并利用机器学习和ROC曲线分析验证其诊断效能 研究主要依赖于TCGA数据库的数据,未进行实验验证 寻找PRCC的早期诊断生物标志物 乳头状肾细胞癌(PRCC)患者 生物信息学 肾癌 RNA表达谱分析、机器学习 深度学习 RNA表达数据 TCGA数据库中的PRCC患者数据
6635 2025-03-09
Artificial intelligence and perinatology: a study on accelerated academic production- a bibliometric analysis
2025, Frontiers in medicine IF:3.1Q1
研究论文 本文通过文献计量学方法,分析了近年来围产医学领域中人工智能应用的快速增长及其研究热点 首次系统性地通过文献计量学方法分析围产医学领域中人工智能的研究趋势和应用热点 研究仅基于特定数据库(WOSCC)的数据,可能无法涵盖所有相关文献 分析围产医学领域中人工智能的研究趋势和应用热点 围产医学领域的文献 医学信息学 围产医学 文献计量学分析 NA 文献数据 382篇相关文献,其中121篇高被引文献
6636 2025-03-09
Breaking new ground: machine learning enhances survival forecasts in hypercapnic respiratory failure
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究旨在开发和验证一个预测高碳酸血症性呼吸衰竭患者生存的模型 使用随机生存森林(RSF)模型在预测高碳酸血症性呼吸衰竭患者预后方面表现出优于传统CoxPH模型和DeepSurv模型的性能 研究样本主要来自两家医院,可能限制了模型的普遍适用性 开发和验证一个预测高碳酸血症性呼吸衰竭患者生存的模型 高碳酸血症性呼吸衰竭患者 机器学习 呼吸系统疾病 随机生存森林(RSF)、DeepSurv、Cox比例风险模型(CoxPH) RSF, DeepSurv, CoxPH 临床数据 697名患者(565名建模组,132名外部验证组)
6637 2025-03-09
MRI quantified enlarged perivascular space volumes as imaging biomarkers correlating with severity of anxiety depression in young adults with long-time mobile phone use
2025, Frontiers in psychiatry IF:3.2Q2
研究论文 本研究旨在利用MRI量化的扩大血管周围间隙(EPVS)指标和机器学习算法,评估长时间使用手机(LTMPU)患者的焦虑和抑郁症状严重程度 首次将MRI量化的EPVS指标与机器学习算法结合,用于评估LTMPU患者的焦虑和抑郁症状严重程度,提供了一种非侵入性、客观且定量的诊断方法 样本量较小(82名参与者),且仅针对长时间使用手机的人群,可能限制了结果的普遍性 开发一种预测模型,评估长时间使用手机患者的焦虑和抑郁症状严重程度 长时间使用手机的年轻成年人 数字病理学 焦虑和抑郁 MRI 逻辑回归模型和K近邻模型 图像 82名长时间使用手机的参与者,其中37名患有焦虑,44名患有抑郁
6638 2025-03-09
Practical Applications of Artificial Intelligence Diagnostic Systems in Fundus Retinal Disease Screening
2025, International journal of general medicine IF:2.1Q2
研究论文 本研究评估了一种基于深度学习的AI诊断系统在视网膜疾病分析中的性能,评估其与专家诊断的一致性及其在筛查应用中的整体效用 使用深度学习AI系统进行视网膜疾病筛查,并与专家诊断进行对比,评估其在实际应用中的可靠性和可行性 研究仅在一家医院进行,样本量虽大但可能缺乏多样性 评估AI诊断系统在视网膜疾病筛查中的性能 3076名接受全面眼科检查的患者 数字病理 视网膜疾病 深度学习 CARE系统 图像 3076名患者
6639 2025-03-08
Corrigendum: Addressing grading bias in rock climbing: machine and deep learning approaches
2025, Frontiers in sports and active living IF:2.3Q2
correction 本文是对先前发表文章的更正 NA NA NA NA NA NA NA NA NA NA
6640 2025-03-09
Research progress on artificial intelligence technology-assisted diagnosis of thyroid diseases
2025, Frontiers in oncology IF:3.5Q2
综述 本文综述了人工智能技术在甲状腺疾病早期诊断中的应用研究,特别是深度学习算法在超声和病理图像识别中的应用 整合了多项研究结果,指出卷积神经网络模型在甲状腺结节和甲状腺病理细胞病变识别中具有高准确率,U-Net网络模型作为分割算法能显著提高甲状腺结节超声图像的识别准确率 目前甲状腺疾病的早期诊断仍依赖于检查设备和医生的临床经验,存在一定的误诊率 探索一种能在早期阶段客观筛查甲状腺病变的技术 甲状腺疾病的早期筛查和诊断 数字病理学 甲状腺癌 深度学习算法 卷积神经网络, U-Net网络模型 超声图像, 病理切片 NA
回到顶部